✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
抽水蓄能电站作为一种大规模储能装置,在电网调峰、填谷、调频和备用等方面发挥着重要作用。本文提出了一种基于粒子群算法(PSO)的抽水蓄能电站最佳调度方法。该方法将抽水蓄能电站的调度问题建模为一个优化问题,并利用PSO算法求解该优化问题,以实现抽水蓄能电站的最佳调度。
引言
抽水蓄能电站是一种利用电网低谷电能将水从下水库抽到上水库,在电网高峰时段利用上水库的水能发电的储能装置。抽水蓄能电站的调度对电网安全稳定运行具有重要影响。
基于粒子群算法的抽水蓄能电站最佳调度方法
1. 问题建模
抽水蓄能电站的调度问题可以建模为一个优化问题,目标函数为抽水蓄能电站的总收益,约束条件包括上水库和下水库的水量平衡、发电功率平衡和抽水功率平衡等。
2. 粒子群算法
粒子群算法是一种受鸟群觅食行为启发的群体智能优化算法。该算法将求解问题中的每个解表示为一个粒子,并通过粒子之间的信息交换和协作来寻找最优解。
3. 抽水蓄能电站最佳调度方法
基于PSO算法的抽水蓄能电站最佳调度方法如下:
-
初始化粒子群,包括粒子的位置和速度。
-
评价每个粒子的适应度,即抽水蓄能电站的总收益。
-
更新粒子的速度和位置。
-
重复步骤2和3,直到达到终止条件。
仿真实验
为了验证所提出的方法的有效性,进行了仿真实验。实验结果表明,该方法能够有效求解抽水蓄能电站的最佳调度问题,并提高抽水蓄能电站的经济效益。
结论
本文提出了一种基于PSO算法的抽水蓄能电站最佳调度方法。该方法将抽水蓄能电站的调度问题建模为一个优化问题,并利用PSO算法求解该优化问题,以实现抽水蓄能电站的最佳调度。仿真实验结果表明,该方法能够有效提高抽水蓄能电站的经济效益。
📣 部分代码
function [ bestPosition, fitValue ] = ...
PSOFUN( CostFun,nVar,VarMin,VarMax,MaxIt,nPop )
%% PSO Parameters
CostFunction=@(x) CostFun(x); % Cost Function
w=1; % Inertia Weight
wdamp=0.99; % Inertia Weight Damping Ratio
c1=1.5; % Personal Learning Coefficient
c2=2.0; % Global Learning Coefficient
VarSize=[1 nVar]; % Size of Decision Variables Matrix
% Velocity Limits
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;
%% Initialization
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
particle=repmat(empty_particle,nPop,1);
GlobalBest.Cost=inf;
for i=1:nPop
% Initialize Position
particle(i).Position=unifrnd(VarMin,VarMax,VarSize);
% Initialize Velocity
particle(i).Velocity=zeros(VarSize);
% Evaluation
particle(i).Cost=CostFunction(particle(i).Position);
% Update Personal Best
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost
GlobalBest=particle(i).Best;
end
end
BestCost=zeros(MaxIt,1);
%% PSO Main Loop
for it=1:MaxIt
for i=1:nPop
% Update Velocity
particle(i).Velocity = w*particle(i).Velocity ...
+c1*rand(VarSize).*(particle(i).Best.Position-particle(i).Position) ...
+c2*rand(VarSize).*(GlobalBest.Position-particle(i).Position);
% Apply Velocity Limits
particle(i).Velocity = max(particle(i).Velocity,VelMin);
particle(i).Velocity = min(particle(i).Velocity,VelMax);
% Update Position
particle(i).Position = particle(i).Position + particle(i).Velocity;
% Velocity Mirror Effect
IsOutside=(particle(i).Position<VarMin | particle(i).Position>VarMax);
particle(i).Velocity(IsOutside)=-particle(i).Velocity(IsOutside);
% Apply Position Limits
particle(i).Position = max(particle(i).Position,VarMin);
particle(i).Position = min(particle(i).Position,VarMax);
% Evaluation
particle(i).Cost = CostFunction(particle(i).Position);
% Update Personal Best
if particle(i).Cost<particle(i).Best.Cost
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost
GlobalBest=particle(i).Best;
end
end
end
BestCost(it)=GlobalBest.Cost;
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
w=w*wdamp;
plot(BestCost(1:it));
xlabel('迭代次数');
ylabel('适应度');
drawnow
end
bestPosition = GlobalBest.Position;
fitValue = GlobalBest.Cost;
% disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
end
⛳️ 运行结果
🔗 参考文献
[1] 杨威嘉,李旭东,赵志高,等.基于抽水蓄能优先调节的多能互补系统日前优化调度方法:CN202211442469.1[P].CN115640982B[2024-03-01].
[2] 杨威嘉,李旭东,赵志高,等.基于抽水蓄能优先调节的多能互补系统日前优化调度方法:202211442469[P][2024-03-01].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类