✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介
海上救援站选址对于提高海上救援效率和保障海上人员生命安全至关重要。本文提出了一种基于非支配排序遗传算法 II(NSGA-II)的多目标优化模型,用于解决考虑成本、救援时间和可靠性的海上救援选址问题。该模型综合考虑了救援站建设成本、救援时间和救援站可靠性三个目标,并利用 NSGA-II 算法求解多目标优化问题。通过算例分析,验证了该模型的有效性和实用性。
1. 引言
海上救援站是海上搜救体系的重要组成部分,其选址直接影响海上救援效率和海上人员生命安全。传统的救援站选址方法主要基于单一目标优化,如最小化救援时间或最小化建设成本。然而,在实际应用中,救援站选址需要综合考虑多个目标,如救援时间、建设成本和救援站可靠性。
多目标优化是一种求解具有多个相互冲突目标的优化问题的技术。NSGA-II 算法是一种常用的多目标优化算法,它具有收敛速度快、鲁棒性强等优点。
2. 问题描述
海上救援选址多目标优化问题可以描述为:
给定一组候选救援站位置,确定一组救援站,使得以下三个目标函数最小:
-
**救援时间:**救援站到所有待救援区域的平均救援时间。
-
**建设成本:**救援站的建设和维护成本。
-
**可靠性:**救援站能够正常运行的概率。
3. 多目标优化模型
基于 NSGA-II 算法,建立了海上救援选址多目标优化模型。
3.1 目标函数
三个目标函数如下:
-
救援时间:
F1 = 1 / n * ∑∑(Dij / Vij)
其中,n 为待救援区域数量,Dij 为救援站 i 到待救援区域 j 的距离,Vij 为救援船从救援站 i 到待救援区域 j 的速度。
-
建设成本:
F2 = ∑Ci
其中,Ci 为救援站 i 的建设成本。
-
可靠性:
F3 = 1 / m * ∑(1 - Pi)
其中,m 为救援站数量,Pi 为救援站 i 正常运行的概率。
3.2 约束条件
-
救援站数量限制:救援站数量不能超过给定值。
-
预算限制:救援站的总建设成本不能超过给定预算。
4. NSGA-II 算法
NSGA-II 算法的具体步骤如下:
-
初始化种群。
-
计算种群中每个个体的适应度值。
-
根据适应度值对种群进行非支配排序。
-
计算种群中每个个体的拥挤度值。
-
选择父代个体进行交叉和变异操作。
-
生成子代种群。
-
合并父代和子代种群,并进行非支配排序和拥挤度计算。
-
选择新的父代个体。
-
重复步骤 2-8,直到达到终止条件。
5. 算例分析
为了验证模型的有效性和实用性,进行了算例分析。算例中考虑了 10 个候选救援站位置和 20 个待救援区域。
5.1 参数设置
NSGA-II 算法的参数设置为:种群规模为 100,最大迭代次数为 100。
5.2 结果分析
算法求得了多个非支配解,这些解在救援时间、建设成本和可靠性三个目标之间实现了权衡。决策者可以根据实际情况选择最优解。
6. 结论
本文提出的基于 NSGA-II 的海上救援选址多目标优化模型能够有效解决考虑成本、救援时间和可靠性的海上救援选址问题。该模型综合考虑了多个目标,并利用 NSGA-II 算法求解多目标优化问题。算例分析验证了该模型的有效性和实用性。该模型可为海上救援站选址提供科学依据,提高海上救援效率和保障海上人员生命安全。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
方案1
成本:31666.75万元
可靠性:85.5%
总救援时长:145.2125小时
方案2
成本:33630.75万元
可靠性:68.25%
总救援时长:139.8515小时
方案3
成本:33118.75万元
可靠性:77.75%
总救援时长:140.2373小时
方案4
成本:34726.75万元
可靠性:82.5%
总救援时长:139.9921小时
方案5
成本:29630.75万元
可靠性:85.5%
总救援时长:145.4822小时
方案6
成本:33841.75万元
可靠性:77.75%
总救援时长:138.6844小时
最优解:
成本:29630.75万元
可靠性:85.5%
总救援时长:145.4822小时
🔗 参考文献
[1] 李霄玉,姚骏.解决多目标旅行商问题的改进NSGA-II算法[J].工业控制计算机, 2018, 31(4):2.
[2] 许欢.多目标进化算法在物流配送车辆路径问题中的应用研究[D].广东工业大学[2024-03-15].DOI:10.7666/d.Y2305379.
[3] 吴灿.石油平台支援船(OSV)多目标总体优化方法研究及应用[D].江苏科技大学,2011.DOI:CNKI:CDMD:2.2010.214315.
[4] 郭彬彬.基于能耗和采光的寒冷地区高校教学楼建筑形体多目标优化研究[D].天津大学,2020.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类