✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
无人机在复杂山地环境中执行任务时,路径规划至关重要,直接影响无人机的能耗和任务完成效率。本文提出了一种基于改进蜣螂算法、蜣螂算法、遗传算法和粒子群算法的无人机三维路径规划方法。该方法通过改进蜣螂算法的搜索策略,增强了算法的全局搜索能力和收敛速度。同时,结合蜣螂算法、遗传算法和粒子群算法的优势,实现了多策略协同优化,进一步提高了路径规划的质量。在复杂山地环境下的仿真实验表明,该方法能够有效规划出低能耗、高效率的无人机三维路径,为无人机在复杂环境中的自主导航和任务执行提供了理论基础和技术支持。
关键词: 无人机;三维路径规划;蜣螂算法;遗传算法;粒子群算法
1. 引言
无人机作为一种新型的空中平台,在军事、民用等领域具有广泛的应用前景。在复杂的山地环境中,无人机执行任务时面临着地形复杂、障碍物众多、气流湍急等挑战。因此,路径规划至关重要,直接影响无人机的能耗和任务完成效率。
传统的路径规划方法,如A*算法和Dijkstra算法,虽然能够找到最短路径,但对于复杂的山地环境,这些方法往往会陷入局部最优解,无法找到全局最优解。为了解决这个问题,近年来,启发式算法在无人机路径规划中得到了广泛的应用。
2. 蜣螂算法
蜣螂算法(BA)是一种受蜣螂滚粪行为启发的元启发式算法。蜣螂在滚粪过程中,会通过不断调整粪球的滚动方向和速度,将粪球滚到最优位置。BA算法模拟了蜣螂的滚粪行为,将求解问题转化为蜣螂滚动粪球的过程。
3. 改进蜣螂算法
为了增强BA算法的全局搜索能力和收敛速度,本文提出了一种改进的蜣螂算法(IBA)。IBA算法在BA算法的基础上,加入了种群相似性动作变异策略和反向学习策略。种群相似性动作变异策略根据当前种群的收敛程度动态调整变异概率,增强算法的全局搜索能力。反向学习策略将每次迭代中表现最好的个体保留下来,防止算法陷入局部最优解。
4. 多策略协同优化算法
为了进一步提高路径规划的质量,本文将IBA算法与遗传算法(GA)和粒子群算法(PSO)相结合,实现了多策略协同优化。GA算法是一种基于自然选择和遗传机制的启发式算法,具有较强的全局搜索能力。PSO算法是一种基于群体智能的启发式算法,具有较快的收敛速度。
5. 仿真实验
为了验证所提方法的有效性,在复杂的山地环境下进行了一系列仿真实验。实验结果表明,IBA算法、GA算法和PSO算法在路径规划中均表现出较好的性能,但IBA算法的全局搜索能力和收敛速度优于GA算法和PSO算法。多策略协同优化算法进一步提高了路径规划的质量,规划出的路径能耗更低、效率更高。
6. 结论
本文提出了一种基于改进蜣螂算法、蜣螂算法、遗传算法和粒子群算法的无人机三维路径规划方法。该方法通过改进蜣螂算法的搜索策略,增强了算法的全局搜索能力和收敛速度。同时,结合蜣螂算法、遗传算法和粒子群算法的优势,实现了多策略协同优化,进一步提高了路径规划的质量。在复杂山地环境下的仿真实验表明,该方法能够有效规划出低能耗、高效率的无人机三维路径,为无人机在复杂环境中的自主导航和任务执行提供了理论基础和技术支持。
📣 部分代码
% The code has been taken from the study:
%'Multiobjective cuckoo search for design optimization Xin-She Yang, Suash Deb'.
% Coded by Hemanth Manjunatha on Nov 13 2015.
% Input parameters
% n -> Number of steps
% m -> Number of Dimensions
% beta -> Power law index % Note: 1 < beta < 2
% Output
% z -> 'n' levy steps in 'm' dimension
%_________________________________________________________________________
% Marine Predators Algorithm source code (Developed in MATLAB R2015a)
%
% programming: Afshin Faramarzi & Seyedali Mirjalili
%
% paper:
% A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi,
% Marine Predators Algorithm: A Nature-inspired Metaheuristic
% Expert Systems with Applications
% DOI: doi.org/10.1016/j.eswa.2020.113377
%
% E-mails: afaramar@hawk.iit.edu (Afshin Faramarzi)
% muh182@iit.edu (Mohammad Heidarinejad)
% ali.mirjalili@laureate.edu.au (Seyedali Mirjalili)
% gandomi@uts.edu.au (Amir H Gandomi)
%_________________________________________________________________________
function [z] = levy(n,m,beta)
num = gamma(1+beta)*sin(pi*beta/2); % used for Numerator
den = gamma((1+beta)/2)*beta*2^((beta-1)/2); % used for Denominator
sigma_u = (num/den)^(1/beta);% Standard deviation
u = random('Normal',0,sigma_u,n,m);
v = random('Normal',0,1,n,m);
z =u./(abs(v).^(1/beta));
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类