✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
光伏发电作为一种可再生能源,其发电量预测对于优化电网调度和能源管理具有重要意义。近年来,基于深度学习的光伏发电量预测方法取得了显著进展。然而,传统卷积神经网络(CNN)在处理时序数据时存在卷积核感受野有限的问题,难以捕捉长期依赖关系。此外,注意力机制虽然可以增强模型对重要特征的关注,但其权重计算过程往往过于复杂,影响模型训练效率。
本研究提出了一种基于三角拓扑聚合优化注意力机制卷积神经网络结合双向门控循环单元(TTAO-CNN-biGRU-MSA)的光伏数据回归预测模型。该模型通过三角拓扑聚合操作扩展了卷积核的感受野,有效捕捉时序数据的长期依赖关系。同时,引入优化注意力机制,简化权重计算过程,提高模型训练效率。此外,双向门控循环单元(biGRU)进一步增强了模型对时序特征的学习能力。
模型结构
TTAO-CNN-biGRU-MSA 模型的结构如下图所示:
三角拓扑聚合优化注意力机制卷积神经网络(TTAO-CNN)
TTAO-CNN 由多个卷积层和三角拓扑聚合层组成。卷积层负责提取时序数据的局部特征。三角拓扑聚合层通过对相邻三个时间步的特征进行聚合,扩展了卷积核的感受野,捕捉时序数据的长期依赖关系。
优化注意力机制
优化注意力机制通过一个轻量级的卷积操作计算注意力权重。与传统注意力机制不同,优化注意力机制采用逐通道卷积,将特征图的每个通道视为一个独立的注意力头,简化了权重计算过程。
双向门控循环单元(biGRU)
biGRU 是一种循环神经网络,可以双向处理时序数据。它通过正向和反向两个隐藏状态,学习时序数据的过去和未来信息,增强了模型对时序特征的学习能力。
结论
本文提出的 TTAO-CNN-biGRU-MSA 模型通过三角拓扑聚合优化注意力机制卷积神经网络和双向门控循环单元的结合,有效捕捉了光伏发电量时序数据的长期依赖关系,提高了回归预测的准确率和鲁棒性。该模型为光伏发电量预测领域提供了新的思路,具有重要的应用价值。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 林靖皓,秦亮曦,苏永秀,等.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.
[2] 方娜,李俊晓,陈浩,等.基于变分模态分解的卷积神经网络双向门控循环单元多元线性回归多频组合短期电力负荷预测[J].现代电力, 2022(004):039.
[3] 冯凤江,杨增刊.基于图卷积和注意力机制的高速公路交通流预测[J].公路交通科技, 2023(9):215-223.DOI:10.3969/j.issn.1002-0268.2023.09.025.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类