✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
正交频分复用 (OFDM) 是一种多载波调制技术,广泛用于现代无线通信系统中。信道估计是 OFDM 系统中一项关键任务,它用于估计信道频率响应,从而补偿信道失真并提高系统性能。本文将讨论三种常见的 OFDM 信道估计方法:最小二乘法 (LS)、最小均方误差 (MMSE) 和线性最小均方误差 (LMMSE)。
最小二乘法 (LS)
LS 估计是通过最小化误差平方和来估计信道响应。对于 OFDM 系统,误差平方和可以表示为:
E = ∑|y(k) - h(k)x(k)|^2
其中:
-
y(k) 是接收信号
-
h(k) 是信道频率响应
-
x(k) 是已知的训练序列
通过求解偏导数并令其为零,可以得到 LS 估计器:
h_LS(k) = (X^H X)^-1 X^H y(k)
其中:
-
X 是训练序列的范德蒙德矩阵
-
H 表示共轭转置
最小均方误差 (MMSE)
MMSE 估计通过最小化信道估计误差的均方值来估计信道响应。对于 OFDM 系统,信道估计误差的均方值可以表示为:
MSE = E[|h(k) - h_MMSE(k)|^2]
其中 h_MMSE(k) 是 MMSE 估计器。
通过求解维纳-霍普夫方程,可以得到 MMSE 估计器:
h_MMSE(k) = R_hh(k) R_yy(k)^-1 y(k)
其中:
-
R_hh(k) 是信道自相关矩阵
-
R_yy(k) 是接收信号自相关矩阵
线性最小均方误差 (LMMSE)
LMMSE 估计是 MMSE 估计的线性近似。它通过将信道自相关矩阵 R_hh(k) 近似为对角矩阵来简化 MMSE 估计器。
LMMSE 估计器可以表示为:
h_LMMSE(k) = (R_yy(k) + σ^2 I)^-1 y(k)
其中:
-
σ^2 是噪声功率
-
I 是单位矩阵
性能比较
LS、MMSE 和 LMMSE 估计器的性能取决于信道条件和训练序列的长度。
-
LS 估计器在信道平坦且训练序列较长时性能最佳。
-
MMSE 估计器在信道存在多径时性能最佳,但需要信道统计信息的先验知识。
-
LMMSE 估计器是 MMSE 估计器的线性近似,在信道平坦或训练序列较短时性能接近 MMSE 估计器。
结论
LS、MMSE 和 LMMSE 是 OFDM 信道估计的常用方法,每种方法都有其自身的优点和缺点。选择最合适的估计器取决于具体的信道条件和系统要求。
📣 部分代码
%Function Declaration:
function ms_error=SMMSE_MSE_calc(X,H,Y,Rgg,SNR_send);
%This function generates mean squared error for the the SMMSE estimator..
%EVALUATION OF Hsmmse
u=rand(64,64);
F=fft(u)*inv(u);%The 64 X 64 twiddle factor matrix..
I=eye(64,64);
Rhh=F*Rgg*F';
Hls =(inv(X)) * Y;
Hsmmse=Rhh*inv(Rhh+(1/SNR_send)*I)*Hls;
ms_error_mat=mean(((abs(H)-abs(Hsmmse))/abs(H)).^2);
for i=1:64
if(ms_error_mat(i)~=0)
ms_error=ms_error_mat(i);
end
end
⛳️ 运行结果
🔗 参考文献
[1] 艾小溪.基于超宽带无线通信系统的信道估计技术的研究[D].南开大学,2011.DOI:10.7666/d.y2003288.
[2] 吴满.可见光多波段通信系统自适应传输技术研究[D].东南大学,2016.DOI:10.7666/d.Y3089722.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类