【信道估计】基于最小二乘法LS+最小均方误差MMSE+线性最小均方误差法LMMSEOFDM信道估计附Matlab代码

本文详细介绍了OFDM系统中的信道估计方法,包括最小二乘法(LS)、最小均方误差(MMSE)和线性最小均方误差(LMMSE)。对比了它们在不同信道条件下的性能,并指出选择哪种方法取决于具体的应用需求。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

正交频分复用 (OFDM) 是一种多载波调制技术,广泛用于现代无线通信系统中。信道估计是 OFDM 系统中一项关键任务,它用于估计信道频率响应,从而补偿信道失真并提高系统性能。本文将讨论三种常见的 OFDM 信道估计方法:最小二乘法 (LS)、最小均方误差 (MMSE) 和线性最小均方误差 (LMMSE)。

最小二乘法 (LS)

LS 估计是通过最小化误差平方和来估计信道响应。对于 OFDM 系统,误差平方和可以表示为:

E = ∑|y(k) - h(k)x(k)|^2

其中:

  • y(k) 是接收信号

  • h(k) 是信道频率响应

  • x(k) 是已知的训练序列

通过求解偏导数并令其为零,可以得到 LS 估计器:

h_LS(k) = (X^H X)^-1 X^H y(k)

其中:

  • X 是训练序列的范德蒙德矩阵

  • H 表示共轭转置

最小均方误差 (MMSE)

MMSE 估计通过最小化信道估计误差的均方值来估计信道响应。对于 OFDM 系统,信道估计误差的均方值可以表示为:

MSE = E[|h(k) - h_MMSE(k)|^2]

其中 h_MMSE(k) 是 MMSE 估计器。

通过求解维纳-霍普夫方程,可以得到 MMSE 估计器:

 

h_MMSE(k) = R_hh(k) R_yy(k)^-1 y(k)

其中:

  • R_hh(k) 是信道自相关矩阵

  • R_yy(k) 是接收信号自相关矩阵

线性最小均方误差 (LMMSE)

LMMSE 估计是 MMSE 估计的线性近似。它通过将信道自相关矩阵 R_hh(k) 近似为对角矩阵来简化 MMSE 估计器。

LMMSE 估计器可以表示为:

h_LMMSE(k) = (R_yy(k) + σ^2 I)^-1 y(k)

其中:

  • σ^2 是噪声功率

  • I 是单位矩阵

性能比较

LS、MMSE 和 LMMSE 估计器的性能取决于信道条件和训练序列的长度。

  • LS 估计器在信道平坦且训练序列较长时性能最佳。

  • MMSE 估计器在信道存在多径时性能最佳,但需要信道统计信息的先验知识。

  • LMMSE 估计器是 MMSE 估计器的线性近似,在信道平坦或训练序列较短时性能接近 MMSE 估计器。

结论

LS、MMSE 和 LMMSE 是 OFDM 信道估计的常用方法,每种方法都有其自身的优点和缺点。选择最合适的估计器取决于具体的信道条件和系统要求。

📣 部分代码

%Function Declaration:  function ms_error=SMMSE_MSE_calc(X,H,Y,Rgg,SNR_send);%This function generates mean squared error for the the SMMSE estimator..%EVALUATION OF Hsmmseu=rand(64,64);F=fft(u)*inv(u);%The 64 X 64 twiddle factor matrix..I=eye(64,64);Rhh=F*Rgg*F';Hls =(inv(X)) * Y;Hsmmse=Rhh*inv(Rhh+(1/SNR_send)*I)*Hls;ms_error_mat=mean(((abs(H)-abs(Hsmmse))/abs(H)).^2);for i=1:64    if(ms_error_mat(i)~=0)        ms_error=ms_error_mat(i);    endend

⛳️ 运行结果

🔗 参考文献

[1] 艾小溪.基于超宽带无线通信系统的信道估计技术的研究[D].南开大学,2011.DOI:10.7666/d.y2003288.

[2] 吴满.可见光多波段通信系统自适应传输技术研究[D].东南大学,2016.DOI:10.7666/d.Y3089722.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值