✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
车辆路径规划(VRP)问题是运筹学中的一个经典问题,其目标是在满足特定约束条件下,为一组车辆规划最优路径,以最小化总行驶距离或时间。带容量的最短距离车辆路径规划问题(CVRP)是VRP问题的一个变种,其中每辆车都具有有限的容量,并且需要考虑车辆的装载和卸载操作。
本文提出了一种基于混合K-Means结合蚁群算法的CVRP求解方法。该方法首先利用K-Means算法对客户点进行聚类,然后将聚类中心作为蚁群算法的初始解。蚁群算法通过模拟蚂蚁的觅食行为,不断更新和优化路径,最终得到CVRP问题的最优解。
1. 问题描述
CVRP问题可以描述为:给定一组客户点和一个配送中心,每辆车都具有有限的容量。需要为车辆规划路径,使得每辆车都从配送中心出发,依次访问所有分配给它的客户点,最后返回配送中心。同时,需要满足以下约束条件:
-
每辆车访问的客户点数量不超过其容量。
-
每辆车访问的客户点顺序是确定的。
-
所有客户点都必须被访问一次。
-
总行驶距离或时间最小化。
2. 混合K-Means结合蚁群算法
本文提出的求解CVRP问题的算法分为两个阶段:
2.1 K-Means聚类
首先,利用K-Means算法对客户点进行聚类。K-Means算法是一种无监督学习算法,其目标是将数据集中的数据点分为K个簇,使得每个簇中的数据点尽可能相似。在CVRP问题中,客户点可以根据其地理位置或其他特征进行聚类。
2.2 蚁群算法
K-Means算法得到的聚类中心作为蚁群算法的初始解。蚁群算法是一种启发式算法,其灵感来自于蚂蚁的觅食行为。在蚁群算法中,每只蚂蚁代表一个潜在的解决方案,而每个蚂蚁在路径上留下的信息素代表该路径的质量。
蚁群算法的步骤如下:
-
初始化:随机生成一组蚂蚁,并为每只蚂蚁分配一个初始解。
-
构建路径:每只蚂蚁根据信息素和启发式信息,依次访问客户点,构建自己的路径。
-
计算适应度:计算每只蚂蚁路径的适应度,即总行驶距离或时间。
-
更新信息素:根据每只蚂蚁的适应度,更新路径上的信息素。
-
迭代:重复步骤2-4,直到达到终止条件。
3. 实验结果
本文将提出的算法与其他两种经典的CVRP求解算法(遗传算法和模拟退火算法)进行了比较。实验结果表明,提出的算法在求解CVRP问题时具有更好的性能,能够得到更优的解和更快的收敛速度。
4. 结论
本文提出了一种基于混合K-Means结合蚁群算法的CVRP求解方法。该方法利用K-Means算法对客户点进行聚类,并利用蚁群算法对路径进行优化。实验结果表明,该方法能够有效求解CVRP问题,得到高质量的解。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1]康燕妮.基于主次种群蚁群算法的物流配送车辆路径优化研究[D].西安建筑科技大学[2024-03-29].DOI:10.7666/d.D713917.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类