【通信】复离散值向量重构的SCSR优化附MATLAB代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

复离散值向量重构(CDVR)在通信、雷达和成像等领域有着广泛的应用。经典的压缩感知(CS)方法在复域中存在局限性,而稀疏编码稀疏表示(SCSR)方法则为复CDVR提供了一种有效的解决方案。本文重点介绍了SCSR优化在复CDVR中的应用,探讨了不同优化算法的性能和优缺点。

引言

复CDVR的目标是利用少量测量值重构复离散值向量。CS方法通过求解欠定线性方程组来实现重构,但在复域中存在相位模糊问题。SCSR方法通过学习复信号的稀疏表示来解决这一问题,将重构过程转化为一个优化问题。

SCSR优化

SCSR优化模型为:

min_x ||Ax - y||_2^2 + λ||x||_1

其中,A为测量矩阵,y为测量值,x为待重构的复向量,λ为正则化参数。

优化算法

解决SCSR优化问题的算法包括:

  • L1正则化最小二乘(L1-LS):直接求解优化模型,但计算复杂度高。

  • 迭代阈值(IST):交替执行阈值化和梯度下降,收敛速度较慢。

  • 近端梯度法(PGD):将优化模型分解为一系列子问题,收敛速度较快。

  • 加速近端梯度法(APGD):在PGD的基础上引入加速策略,进一步提高收敛速度。

性能比较

不同优化算法的性能受以下因素影响:

  • 重构精度:重构向量与原始向量的相似度。

  • 收敛速度:算法达到给定精度所需的时间。

  • 计算复杂度:算法所需的计算量。

结论

SCSR优化是复CDVR的有效方法。不同的优化算法具有不同的性能特点,需要根据具体应用场景进行选择。L1-LS精度高但复杂度高,IST收敛速度慢,PGD和APGD收敛速度快但精度稍低。在实际应用中,可以根据精度、收敛速度和计算复杂度的权衡来选择合适的算法。

📣 部分代码

%%--------------------------------------------------------------------------% simulation for IW-SCSR in channel equalizaiton with cyclic prefix (QPSK)%%--------------------------------------------------------------------------addpath('subfunctions');n=4; % number of transmit antennasm=3; % number of receive antennasL_path=5; % number of multipathnBlock=32; % block lengthN=n*nBlock;M=m*nBlock;nIteration=100; % number of iterationsnSymbolVector=10; % number of unknown vectors per channel realization and SNRnSample=5; % number of samples of channel matrixnUpdate=5; % number of weight updatearrSNR=0:2.5:30; % array for signal-to-noise ratio% probability distributionL=4;arrP=[1/4 1/4 1/4 1/4];arrC=[1+1j -1+1j -1-1j 1-1j];matQ_init=ones(N,L)/L;% parameter of the proposed algorithmbeta_RL1=15;rho=0.1;% rng('shuffle');matSumSER_SCSR_RL1=zeros(nUpdate,length(arrSNR));for i=1:nSample  disp(['i=' num2str(i)]);  % channel matrix  [A,~]=makeChannel_CE(m,n,L_path,nBlock);    for SNRIndex=1:length(arrSNR)    SNR=arrSNR(SNRIndex);    disp(['  SNR=' num2str(SNR)]);    % variance of additive noise    sigma_c=sqrt(2*n*L_path/(10^(SNR/10)));    % parameter of optimization problem    numer_RL1=0;    for l=1:L      numer_RL1=numer_RL1+arrP(l)*sum(sum(matQ_init.*(abs(real(arrC(l)-ones(N,1)*arrC))+abs(imag(arrC(l)-ones(N,1)*arrC)))));    end    lambda_RL1_init=numer_RL1/(beta_RL1*M*sigma_c^(2));    % inverse matrix    invMat_RL1_init=(rho*L*eye(N)+lambda_RL1_init*(A'*A))^(-1);    for symbolVectorIndex=1:nSymbolVector      % transmitted signal vector      x=(randi([0,1],N,1)*2-ones(N,1))+1j*(randi([0,1],N,1)*2-ones(N,1));      % additive noise vector      v=(randn(M,1)+1j*randn(M,1))/sqrt(2)*sigma_c;      % received signal vector      y=A*x+v;            %% IW-SCSR      matQ=matQ_init;      invMat_RL1=invMat_RL1_init;      lambda_RL1=lambda_RL1_init;      for itrIndex=1:nUpdate        [x_est,~]=SCSR_RL1(y,A,arrC,matQ,invMat_RL1,lambda_RL1,rho,nIteration,x);        matSumSER_SCSR_RL1(itrIndex,SNRIndex)=matSumSER_SCSR_RL1(itrIndex,SNRIndex)+nnz(quantize(x_est,arrC)-x)/N;        matD=abs(x_est*ones(1,L)-ones(N,1)*arrC);        matQ=matD.^(-1)./(sum((matD.^(-1)),2)*ones(1,L));        % parameter of optimization problem        numer_RL1=0;        for l=1:L          numer_RL1=numer_RL1+arrP(l)*sum(sum(matQ.*(abs(real(arrC(l)-ones(N,1)*arrC))+abs(imag(arrC(l)-ones(N,1)*arrC)))));        end        lambda_RL1=numer_RL1/(beta_RL1*M*sigma_c^(2));        invMat_RL1=(rho*L*eye(N)+lambda_RL1*(A'*A))^(-1);      end    end  endendmatSER_SCSR_RL1=matSumSER_SCSR_RL1/nSample/nSymbolVector%% Display resultsarrMarker=['o';'^';'s';'d';'v';'*';'<';'x';'d';'p';'h';];close all;figure;setLegend={};for itrIndex=1:4:nUpdate  h=semilogy(arrSNR,matSER_SCSR_RL1(itrIndex,:),['-' arrMarker(itrIndex)],'LineWidth',1,'MarkerSize',8);  setLegend=[setLegend ['IW-SCSR ($T=' num2str(itrIndex) '$)']];  hold on;endgrid on;objLegend=legend(setLegend,'Location','northeast');objLegend.Interpreter='latex';objLegend.FontSize=16;fig=gca;fig.FontSize=18;fig.TickLabelInterpreter='latex';fig.XLabel.Interpreter='latex';fig.YLabel.Interpreter='latex';xlabel('SNR (dB)');ylabel('SER');axis([arrSNR(1) arrSNR(length(arrSNR)) 1e-5 1]);saveas(h, 'CE_QPSK.eps', 'epsc');

⛳️ 运行结果

🔗 参考文献

"Reconstruction of Complex Discrete-Valued Vector via Convex Optimization With Sparse Regularizers,"  IEEE Access, vol. 6, pp. 66499-66512, Dec. 2018.  (IEEE Xplore)

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值