✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在认知无线电网络中,有限反馈认知MIMO系统面临着联合功率分配和反馈速率控制的资源分配问题。为了解决这一问题,本文提出了一种基于博弈论的联合资源分配算法。该算法将联合资源分配问题建模为一个博弈模型,其中每个用户是一个博弈者,目标函数是其传输速率。通过求解博弈模型的纳什均衡,可以得到联合功率分配和反馈速率控制的最佳策略。仿真结果表明,该算法可以有效地提高系统容量,并降低反馈开销。
引言
认知无线电网络是一种新型的无线通信技术,它允许未授权用户在授权用户不使用频谱资源时使用这些资源。在认知无线电网络中,有限反馈认知MIMO系统是一种重要的技术,它可以提高系统容量和频谱效率。
在有限反馈认知MIMO系统中,用户需要向基站反馈信道状态信息(CSI),以便基站进行预编码。然而,由于反馈信道的带宽有限,用户只能反馈有限的CSI。因此,如何有效地进行有限反馈CSI的获取和利用成为一个关键问题。
联合功率分配和反馈速率控制是有限反馈认知MIMO系统中两个重要的资源分配问题。功率分配决定了每个用户分配的功率,而反馈速率控制决定了每个用户反馈CSI的速率。这两个问题相互影响,需要联合考虑
结论
本文提出了一种基于博弈论的有限反馈认知MIMO系统的联合功率分配与反馈速率控制资源分配算法。仿真结果表明,该算法可以有效地提高系统容量,并降低反馈开销。
📣 部分代码
r_temp1=[]; %为极值开辟空间
r_temp2=[];
r_temp3=[];
r_temp4=[];
for i=1:1:L
r1(i)=R_total(i)/N_s;
r2(i)=R_total(i)/N_s;
r3(i)=R_total(i)/N_s;
r4(i)=R_total(i)/N_s;
for m=i:1:100
H_k1=sqrt(1-2^(-r1(m)))*h_k1+sqrt(2^(-r1(m)))*deta; %量化的认知用户CSI
H_k2=sqrt(1-2^(-r2(m)))*h_k2+sqrt(2^(-r2(m)))*deta;
H_k3=sqrt(1-2^(-r3(m)))*h_k3+sqrt(2^(-r3(m)))*deta;
H_k4=sqrt(1-2^(-r4(m)))*h_k4+sqrt(2^(-r4(m)))*deta;
H=[H_k1;H_k2;H_k3;H_k4];
H_k1_neg=[H_k2;H_k3;H_k4;H_p1;H_p2]; %除了自己的信道信息,用于求波束成形矢量
H_k2_neg=[H_k1;H_k3;H_k4;H_p1;H_p2];
H_k3_neg=[H_k1;H_k2;H_k4;H_p1;H_p2];
H_k4_neg=[H_k1;H_k2;H_k3;H_p1;H_p2];
f1=null(H_k1_neg,'r'); %SU1的波束成形矢量
f1=f1/norm(f1);
f2=null(H_k2_neg,'r'); %SU2的波束成形矢量
f2=f2/norm(f2);
f3=null(H_k3_neg,'r'); %SU3的波束成形矢量
f3=f3/norm(f3);
f4=null(H_k4_neg,'r'); %SU4的波束成形矢量
f4=f4/norm(f4);
F=[f1';f2';f3';f4']';
r_temp1(i)=sulvfenpei(H,F,R_total(i),1);
r_temp2(i)=sulvfenpei(H,F,R_total(i),2);
r_temp3(i)=sulvfenpei(H,F,R_total(i),3);
r_temp4(i)=sulvfenpei(H,F,R_total(i),4);
R1(i)=max(r_min(i),min(r_temp1(i),r_max(i)));
R2(i)=max(r_min(i),min(r_temp2(i),r_max(i)));
R3(i)=max(r_min(i),min(r_temp3(i),r_max(i)));
R4(i)=max(r_min(i),min(r_temp4(i),r_max(i)));
m=m+1;
r1(m)=R1(i);
r2(m)=R2(i);
r3(m)=R3(i);
r4(m)=R4(i);
if abs(r1(m)-r1(m-1))<0.001&&abs(r2(m)-r2(m-1))<0.001&&abs(r3(m)-r3(m-1))<0.001&&abs(r4(m)-r4(m-1))<0.001
break
end
end
end
end
for i=1:1:L
C_ga(i)=rongliang(h_k1,f1,N0,p_opt(2),R1(i))+rongliang(h_k2,f2,N0,p_opt(2),R2(i))+rongliang(h_k3,f3,N0,p_opt(2),R3(i))+rongliang(h_k4,f4,N0,p_opt(2),R4(i));
%主用户反馈速率为4
C_ga10(i)=rongliang(h_k1,f1,N0,p_opt(5),R1(i))+rongliang(h_k2,f2,N0,p_opt(5),R2(i))+rongliang(h_k3,f3,N0,p_opt(5),R3(i))+rongliang(h_k4,f4,N0,p_opt(5),R4(i));
%主用户反馈速率为10
C_ga100(i)=rongliang(h_k1,f1,N0,p_opt(50),R1(i))+rongliang(h_k2,f2,N0,p_opt(50),R2(i))+rongliang(h_k3,f3,N0,p_opt(50),R3(i))+rongliang(h_k4,f4,N0,p_opt(50),R4(i));
%主用户反馈速率为100
end
%平均反馈速率的容量
for i=1:1:L
H_k1=sqrt(1-2^(-R_total(i)/N_s))*h_k1+sqrt(2^(-R_total(i)/N_s))*deta; %量化的认知用户CSI
H_k2=sqrt(1-2^(-R_total(i)/N_s))*h_k2+sqrt(2^(-R_total(i)/N_s))*deta;
H_k3=sqrt(1-2^(-R_total(i)/N_s))*h_k3+sqrt(2^(-R_total(i)/N_s))*deta;
H_k4=sqrt(1-2^(-R_total(i)/N_s))*h_k4+sqrt(2^(-R_total(i)/N_s))*deta;
H_k1_neg=[H_k2;H_k3;H_k4;H_p1;H_p2]; %除了自己的信道信息,用于求波束成形矢量
H_k2_neg=[H_k1;H_k3;H_k4;H_p1;H_p2];
H_k3_neg=[H_k1;H_k2;H_k4;H_p1;H_p2];
H_k4_neg=[H_k1;H_k2;H_k3;H_p1;H_p2];
f1=null(H_k1_neg,'r'); %SU1的波束成形矢量
f1=f1/norm(f1);
f2=null(H_k2_neg,'r'); %SU2的波束成形矢量
f2=f2/norm(f2);
f3=null(H_k3_neg,'r'); %SU3的波束成形矢量
f3=f3/norm(f3);
f4=null(H_k4_neg,'r'); %SU4的波束成形矢量
f4=f4/norm(f4);
C_ea(i)=rongliang(h_k1,f1,N0,p_opt(2),R_total(i)/N_s)+rongliang(h_k2,f2,N0,p_opt(2),R_total(i)/N_s)+rongliang(h_k3,f3,N0,p_opt(2),R_total(i)/N_s)+rongliang(h_k4,f4,N0,p_opt(2),R_total(i)/N_s);
end
for i=1:1:L
R_ga(i,:)=[R1(i),R2(i),R3(i),R4(i)];
R_ea(i,:)=[R_total(i)/N_s,R_total(i)/N_s,R_total(i)/N_s,R_total(i)/N_s];
end
plot(4:4:32,C_ga(1,1:8),'*k-');
hold on
plot(4:4:32,C_ea(1,1:8),'+r-');
bar(4:4:32,R_ga(1:8,1:4));
%bar(4:4:32,R_ea(1:8,1:4));
xlabel('总的反馈约束 (bit/s)');
ylabel('系统和速率 (Bits/Hz/s)');
legend('博弈反馈速率','平均反馈速率');
⛳️ 运行结果
🔗 参考文献
[1]王晨.有限反馈认知MIMO系统中基于博弈论的资源分配[D].桂林电子科技大学[2024-04-05].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类