✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
随着无人系统技术的快速发展,无人系统在各个领域的应用越来越广泛。无人系统自助航路规划和自助避碰算法是无人系统自主导航的关键技术,也是无人系统安全运行的重要保障。本文对无人系统自助航路规划和自助避碰算法的研究现状进行了综述,并重点介绍了基于图搜索的自助航路规划算法和基于势场法的自助避碰算法。最后,本文对无人系统自助航路规划和自助避碰算法的研究方向进行了展望。
1. 引言
无人系统是指能够自主完成任务的系统,包括无人机、无人车、无人船等。无人系统具有自主性、智能化、高效性等特点,在军事、民用等领域具有广泛的应用前景。
无人系统自助航路规划是指无人系统根据自身状态和环境信息,自主规划航路,以实现从起点到终点的安全高效飞行。无人系统自助避碰是指无人系统在飞行过程中,根据自身状态和环境信息,自主避开障碍物,以确保飞行安全。
无人系统自助航路规划和自助避碰算法是无人系统自主导航的关键技术,也是无人系统安全运行的重要保障。近年来,无人系统自助航路规划和自助避碰算法的研究取得了显著进展,涌现出许多新的算法和技术。
2. 无人系统自助航路规划算法
无人系统自助航路规划算法是指无人系统根据自身状态和环境信息,自主规划航路,以实现从起点到终点的安全高效飞行。无人系统自助航路规划算法主要包括基于图搜索的算法、基于遗传算法的算法、基于蚁群算法的算法等。
2.1 基于图搜索的算法
基于图搜索的算法是无人系统自助航路规划算法中最常用的算法之一。该算法将飞行区域划分为多个网格,并将每个网格视为一个节点,将相邻的网格之间的连线视为一条边,从而将飞行区域表示为一个图。无人系统根据自身状态和环境信息,在图中搜索从起点到终点的最优路径,即为无人系统的自助航路。
基于图搜索的算法具有计算效率高、易于实现等优点,但其缺点是规划的航路可能不是最优的,并且对飞行区域的网格划分精度要求较高。
2.2 基于遗传算法的算法
基于遗传算法的算法是一种基于仿生学的算法,其原理是模拟自然界生物的进化过程,通过不断地选择、交叉和变异,最终找到最优的航路。
基于遗传算法的算法具有全局搜索能力强、鲁棒性好等优点,但其缺点是计算效率较低,并且对算法参数的设置要求较高。
2.3 基于蚁群算法的算法
基于蚁群算法的算法是一种基于仿生学的算法,其原理是模拟蚂蚁寻找食物的路径。蚂蚁在寻找食物的过程中,会留下信息素,信息素浓度越高,表示该路径越优。无人系统根据信息素浓度,选择最优的路径进行飞行。
基于蚁群算法的算法具有鲁棒性好、易于实现等优点,但其缺点是计算效率较低,并且对算法参数的设置要求较高。
3. 无人系统自助避碰算法
无人系统自助避碰是指无人系统在飞行过程中,根据自身状态和环境信息,自主避开障碍物,以确保飞行安全。无人系统自助避碰算法主要包括基于势场法的算法、基于神经网络的算法、基于模糊逻辑的算法等。
3.1 基于势场法的算法
基于势场法的算法是无人系统自助避碰算法中最常用的算法之一。该算法将障碍物视为斥力源,将目标点视为引力源,无人系统根据自身状态和环境信息,计算出各个方向上的合力,并选择合力方向进行飞行,从而避开障碍物。
基于势场法的算法具有计算效率高、易于实现等优点,但其缺点是容易陷入局部最优,并且对障碍物的形状和位置要求较高。
3.2 基于神经网络的算法
基于神经网络的算法是一种基于机器学习的算法,其原理是训练一个神经网络,使神经网络能够根据自身状态和环境信息,识别障碍物并避开障碍物。
基于神经网络的算法具有鲁棒性好、泛化能力强等优点,但其缺点是训练神经网络需要大量的训练数据,并且对神经网络的结构和参数设置要求较高。
3.3 基于模糊逻辑的算法
基于模糊逻辑的算法是一种基于模糊理论的算法,其原理是将无人系统的状态和环境信息转换为模糊变量,并根据模糊规则进行决策,从而避开障碍物。
基于模糊逻辑的算法具有鲁棒性好、易于实现等优点,但其缺点是需要人工设计模糊规则,并且对模糊规则的准确性要求较高。
4. 研究方向
无人系统自助航路规划和自助避碰算法的研究方向主要包括:
-
提高算法的效率和精度
-
提高算法的鲁棒性
-
提高算法的适应性
-
提高算法的安全性
5. 结论
无人系统自助航路规划和自助避碰算法是无人系统自主导航的关键技术,也是无人系统安全运行的重要保障。近年来,无人系统自助航路规划和自助避碰算法的研究取得了显著进展,涌现出许多新的算法和技术。未来,无人系统自助航路规划和自助避碰算法的研究将继续深入,并应用于更多的无人系统中。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类