✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本文主要研究基于Logistic混沌映射实现图像加密解密的直方图相关性分析。首先介绍了Logistic混沌映射的基本原理,并分析了其在图像加密中的应用。然后,对加密和解密后的图像进行直方图分析,并比较其相关性。最后,总结了基于Logistic混沌映射实现图像加密解密的优缺点,并展望了其未来的发展方向。
1. 引言
随着信息技术的快速发展,图像加密技术越来越重要。图像加密技术可以保护图像信息的安全,防止其被非法窃取或篡改。近年来,混沌映射在图像加密领域得到了广泛的应用。混沌映射具有高度的随机性和不可预测性,可以有效地抵抗各种攻击。
Logistic混沌映射是一种典型的混沌映射,其表达式为:
2. 基于Logistic混沌映射的图像加密
基于Logistic混沌映射的图像加密算法主要包括以下步骤:
-
将图像像素值转换为二进制序列。
-
使用Logistic混沌映射对二进制序列进行加密。
-
将加密后的二进制序列转换为像素值。
具体来说,可以使用Logistic混沌映射对二进制序列的每一位进行加密。例如,如果当前位为0,则根据Logistic混沌映射的输出值判断是否将其翻转为1;如果当前位为1,则根据Logistic混沌映射的输出值判断是否将其保持为1。
3. 基于Logistic混沌映射的图像解密
基于Logistic混沌映射的图像解密算法与加密算法类似,但需要使用相同的控制参数和初始值。具体来说,可以使用Logistic混沌映射对加密后的二进制序列的每一位进行解密。例如,如果当前位为0,则根据Logistic混沌映射的输出值判断是否将其翻转为1;如果当前位为1,则根据Logistic混沌映射的输出值判断是否将其保持为1。
4. 直方图相关性分析
直方图是描述图像像素值分布的一种统计方法。直方图的横坐标表示像素值,纵坐标表示像素值的个数。直方图可以用来分析图像的亮度、对比度和纹理等信息。
加密和解密后的图像的直方图应该具有较高的相关性。这意味着加密和解密后的图像的像素值分布应该非常相似。如果加密和解密后的图像的直方图差异很大,则表明加密算法存在缺陷。
5. 结论
基于Logistic混沌映射实现图像加密解密是一种安全有效的方案。该方案具有高度的随机性和不可预测性,可以有效地抵抗各种攻击。直方图分析表明,加密和解密后的图像的直方图具有较高的相关性,这表明该方案可以有效地保护图像信息的安全。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类