✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
情感识别作为自然语言处理中的重要课题,在人机交互、智能客服等领域有着广泛应用。本文基于卷积神经网络结合长短记忆神经网络(CNN-LSTM)模型,对CASIA数据集中的6种语音情感进行识别。模型首先利用卷积神经网络提取语音信号的特征,然后利用长短记忆神经网络学习语音信号的时序特征,最终实现对语音情感的识别。实验结果表明,该模型在CASIA数据集上的识别准确率达到90.2%,优于其他模型。
1、将压缩包的所有文件复制到Matlab当前目录,可以不复制“语谱图”,因为接下来程序能生成语谱图。然后选中CASIA数据集文件夹,右键,点添加到路径→选定文件和子文件夹。(如果没这一步,读取时会报错,找不到文件)。
2、运行程序。三种方法,选一即可:①命令行输入 page,回车;②双击page.fig;③右键page.m,点运行。然后会出来界面。
3、生成语谱图按钮(仅运行一次即可,下次打开界面时就没必要再运行了)。就是把CASIA数据集里所有的语音信号,转化成语谱图。CASIA数据集有6类情绪,每类200条语音信号,共1200条。生成的语谱图也一共6类,1200张。点完之后需要等1分钟左右,生成图像比较慢。当提示“语谱图生成完成”就可以继续了。可以当前目录出现了“语谱图”文件夹,里面有6类,共1200张图像。
4、学习训练(训练好了之后也是,下次打开界面时就不需要重新训练了)。也就是搭建CNN-LSTM网络,训练所有语谱图。点击之后会显示训练过程,等待训练结束即可,或者也可以中途停止,不建议中途停止。中途停止之后模型可能训练得不好,但是接下来的步骤也可以继续。训练完成当前目录出现“trainedNet.mat”,即为训练所得模型。
5、加载语音信号,也就是要测试单个信号了。按窗口提示选取CASIA数据集里某个信号,选择完之后,绘图窗会显示该信号的波形。
6、语谱图生成。也就是生成这个信号的语谱图。点击之后,语谱图同样会出现在此绘图窗中。
7、点识别结果。“显示结果”框会出现识别结果。
🔗 参考文献
[1] 袁亮,卢官明,闫静杰.基于长短时间记忆网络和卷积神经网络的语音情感识别方法:CN201611093447.3[P].CN106782602A[2024-04-26].
[2] 卢官明,袁亮,杨文娟,等.基于长短期记忆和卷积神经网络的语音情感识别[J].南京邮电大学学报:自然科学版, 2018, 38(5):7.DOI:10.14132/j.cnki.1673-5439.2018.05.009.
[3] 姚增伟,刘炜煌,王梓豪,等.基于卷积神经网络和长短时记忆神经网络的非特定人语音情感识别算法[J].新型工业化, 2018, 8(2):7.DOI:10.19335/j.cnki.2095-6649.2018.2.009.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类