【激光】自由运行激光微分速率方程matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

激光作为一种高度定向、单色性、相干性的光源,在科学研究、医疗、工业、通讯等领域得到了广泛应用。理解激光的产生机制和动力学行为,对于优化激光器性能和探索新型激光器具有重要意义。本文将深入探讨自由运行激光微分速率方程,揭示激光器中光场和粒子数演化的关键规律。

1. 自由运行激光器模型

自由运行激光器是指没有外界调制或反馈,处于自发发射状态的激光器。其典型结构包括增益介质、谐振腔和泵浦源。增益介质通过泵浦源的激励产生粒子数反转,为光的放大提供条件;谐振腔则由反射镜组成,用来选择特定波长的光进行共振放大。

2. 自由运行激光微分速率方程

自由运行激光器中光场和粒子数的演化可以用一组微分速率方程来描述。这些方程基于以下基本原理:

  • **光场演化:**光场强度随时间变化取决于增益和损耗。增益来源于增益介质中的受激发射,损耗包括腔体损耗和非线性效应等。

  • **粒子数演化:**粒子数随时间变化取决于泵浦速率、受激发射和自发辐射。

2.1 光场方程

光场强度的演化可以用以下微分方程描述:

dI/dt = (G - L)I

其中:

  • I:光场强度。

  • G:增益系数。

  • L:损耗系数。

2.2 粒子数方程

增益介质中粒子数的演化可以用以下微分方程描述:

dN/dt = P - (σI + γ)N

其中:

  • N:增益介质中处于上能级态的粒子数。

  • P:泵浦速率。

  • σ:受激发射截面。

  • γ:自发辐射速率。

3. 解释

3.1 增益和损耗

增益系数 G 与增益介质的特性和粒子数相关。当粒子数处于反转状态时,增益系数大于损耗系数 L,光场将被放大。

损耗系数 L 反映了腔体损耗、非线性效应等对光场的衰减作用。

3.2 泵浦速率和自发辐射

泵浦速率 P 代表了增益介质每秒被激发的粒子数。自发辐射速率 γ 代表了粒子自发跃迁回基态的速率。

3.3 受激发射

受激发射是激光产生的关键机制。当光场与处于上能级态的粒子相互作用时,会诱发粒子跃迁回基态并释放出与入射光场相位和频率相同的光子。这个过程导致光场被放大。

4. 激光阈值

自由运行激光器只有在增益大于损耗时才会产生激光。当增益和损耗相等时,激光器达到阈值。阈值条件可以通过将光场方程和粒子数方程联立求解得到:

G = L

5. 结论

自由运行激光微分速率方程揭示了激光器中光场和粒子数演化的动态规律,为理解和预测激光器性能提供了理论基础。这些方程可以用于分析不同参数对激光输出特性的影响,并为激光器设计和优化提供指导。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面

  • 7
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值