【独家首发】Matlab实现斑马优化算法ZOA优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

负荷预测是电力系统运行与控制的关键环节,准确的负荷预测可以提高电力系统运行效率,降低运行成本,保障电力供应安全。近年来,深度学习在负荷预测领域取得了显著进展,其中Transformer-BiLSTM模型因其强大的时间序列特征提取能力而备受关注。然而,模型参数的优化对于模型性能至关重要。本文提出了一种基于斑马优化算法 (ZOA) 优化的 Transformer-BiLSTM 模型,用于负荷数据回归预测。该方法利用 ZOA 的全局搜索能力,对模型参数进行优化,提升了模型预测精度。实验结果表明,与其他优化算法相比,ZOA 优化后的 Transformer-BiLSTM 模型在多个数据集上均取得了更好的预测效果,为电力系统负荷预测提供了新的思路和方法。

1. 引言

负荷预测是电力系统运行与控制的关键环节,其准确性直接影响着电力系统的安全、稳定和经济运行。传统负荷预测方法主要依赖统计学方法和专家经验,难以应对电力负荷的复杂性和非线性特征。近年来,随着深度学习技术的快速发展,深度学习模型在负荷预测领域展现出巨大的优势。

Transformer-BiLSTM 模型是一种结合了 Transformer 和 BiLSTM 的深度学习模型,能够有效地提取时间序列数据中的特征信息,并进行长短期依赖关系建模。然而,该模型的性能很大程度上取决于参数的设置,而手动调整参数往往效率低下且难以取得最佳效果。为了克服这一难题,本文提出了一种基于 ZOA 优化的 Transformer-BiLSTM 模型,利用 ZOA 算法的全局搜索能力,对模型参数进行优化,提升模型预测精度。

2. 斑马优化算法 (ZOA)

斑马优化算法 (ZOA) 是一种新型的元启发式优化算法,其灵感来源于斑马群体的觅食行为。该算法通过模拟斑马的社会行为和觅食策略,在搜索空间中进行高效的全局搜索,并最终找到最优解。

ZOA 算法主要包括以下步骤:

  • 初始化种群:随机生成一组斑马个体,每个个体代表一个潜在的解。

  • 评估适应度:根据目标函数计算每个个体的适应度值,用于衡量解的优劣。

  • 更新位置:根据斑马的社会行为和觅食策略,更新每个个体的坐标位置,以寻找更优的解。

  • 终止条件:当满足预设的终止条件,例如迭代次数或适应度值达到阈值,则停止搜索过程。

3. Transformer-BiLSTM 模型

Transformer-BiLSTM 模型是一种深度学习模型,将 Transformer 和 BiLSTM 模型结合在一起,以增强时间序列特征提取能力。

Transformer 模型利用自注意力机制,能够有效地捕捉时间序列数据中的长距离依赖关系。BiLSTM 模型则能够提取时间序列数据的双向特征,并进行长短期记忆建模。

4. ZOA 优化 Transformer-BiLSTM 模型

本文提出了一种基于 ZOA 优化的 Transformer-BiLSTM 模型,用于负荷数据回归预测。该方法将 ZOA 算法应用于 Transformer-BiLSTM 模型的参数优化,以提升模型预测精度。

具体步骤如下:

  1. 初始化 ZOA 种群: 随机生成一组 ZOA 个体,每个个体代表一组 Transformer-BiLSTM 模型参数。

  2. 训练模型: 使用每个个体代表的参数训练 Transformer-BiLSTM 模型。

  3. 评估模型性能: 根据目标函数评估每个模型的预测精度,作为 ZOA 个体的适应度值。

  4. 更新 ZOA 个体: 根据 ZOA 算法的更新规则,更新每个 ZOA 个体的参数,以寻找更优的模型参数组合。

  5. 重复步骤 2-4: 直到满足 ZOA 算法的终止条件,即可获得最佳的 Transformer-BiLSTM 模型参数。

5. 实验与结果

为了验证 ZOA 优化 Transformer-BiLSTM 模型的有效性,本文在多个公开数据集上进行了实验,并与其他优化算法进行了对比。

实验结果表明,与其他优化算法相比,ZOA 优化后的 Transformer-BiLSTM 模型在多个数据集上均取得了更好的预测效果,其预测精度明显提高。

6. 结论

本文提出了一种基于 ZOA 优化的 Transformer-BiLSTM 模型,用于负荷数据回归预测。该方法利用 ZOA 算法的全局搜索能力,对模型参数进行优化,提升了模型预测精度。实验结果表明,该方法在多个数据集上均取得了优异的预测效果,为电力系统负荷预测提供了新的思路和方法。

7. 未来展望

未来研究方向包括:

  • 探究其他优化算法,进一步提升模型预测精度。

  • 研究模型的鲁棒性,提高模型对噪声数据的适应性。

  • 将模型应用于其他时间序列预测任务,如风电功率预测、电力负荷需求预测等。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值