✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
负荷预测是电力系统运行与控制的关键环节,准确的负荷预测可以提高电力系统运行效率,降低运行成本,保障电力供应安全。近年来,深度学习在负荷预测领域取得了显著进展,其中Transformer-BiLSTM模型因其强大的时间序列特征提取能力而备受关注。然而,模型参数的优化对于模型性能至关重要。本文提出了一种基于斑马优化算法 (ZOA) 优化的 Transformer-BiLSTM 模型,用于负荷数据回归预测。该方法利用 ZOA 的全局搜索能力,对模型参数进行优化,提升了模型预测精度。实验结果表明,与其他优化算法相比,ZOA 优化后的 Transformer-BiLSTM 模型在多个数据集上均取得了更好的预测效果,为电力系统负荷预测提供了新的思路和方法。
1. 引言
负荷预测是电力系统运行与控制的关键环节,其准确性直接影响着电力系统的安全、稳定和经济运行。传统负荷预测方法主要依赖统计学方法和专家经验,难以应对电力负荷的复杂性和非线性特征。近年来,随着深度学习技术的快速发展,深度学习模型在负荷预测领域展现出巨大的优势。
Transformer-BiLSTM 模型是一种结合了 Transformer 和 BiLSTM 的深度学习模型,能够有效地提取时间序列数据中的特征信息,并进行长短期依赖关系建模。然而,该模型的性能很大程度上取决于参数的设置,而手动调整参数往往效率低下且难以取得最佳效果。为了克服这一难题,本文提出了一种基于 ZOA 优化的 Transformer-BiLSTM 模型,利用 ZOA 算法的全局搜索能力,对模型参数进行优化,提升模型预测精度。
2. 斑马优化算法 (ZOA)
斑马优化算法 (ZOA) 是一种新型的元启发式优化算法,其灵感来源于斑马群体的觅食行为。该算法通过模拟斑马的社会行为和觅食策略,在搜索空间中进行高效的全局搜索,并最终找到最优解。
ZOA 算法主要包括以下步骤:
-
初始化种群:随机生成一组斑马个体,每个个体代表一个潜在的解。
-
评估适应度:根据目标函数计算每个个体的适应度值,用于衡量解的优劣。
-
更新位置:根据斑马的社会行为和觅食策略,更新每个个体的坐标位置,以寻找更优的解。
-
终止条件:当满足预设的终止条件,例如迭代次数或适应度值达到阈值,则停止搜索过程。
3. Transformer-BiLSTM 模型
Transformer-BiLSTM 模型是一种深度学习模型,将 Transformer 和 BiLSTM 模型结合在一起,以增强时间序列特征提取能力。
Transformer 模型利用自注意力机制,能够有效地捕捉时间序列数据中的长距离依赖关系。BiLSTM 模型则能够提取时间序列数据的双向特征,并进行长短期记忆建模。
4. ZOA 优化 Transformer-BiLSTM 模型
本文提出了一种基于 ZOA 优化的 Transformer-BiLSTM 模型,用于负荷数据回归预测。该方法将 ZOA 算法应用于 Transformer-BiLSTM 模型的参数优化,以提升模型预测精度。
具体步骤如下:
-
初始化 ZOA 种群: 随机生成一组 ZOA 个体,每个个体代表一组 Transformer-BiLSTM 模型参数。
-
训练模型: 使用每个个体代表的参数训练 Transformer-BiLSTM 模型。
-
评估模型性能: 根据目标函数评估每个模型的预测精度,作为 ZOA 个体的适应度值。
-
更新 ZOA 个体: 根据 ZOA 算法的更新规则,更新每个 ZOA 个体的参数,以寻找更优的模型参数组合。
-
重复步骤 2-4: 直到满足 ZOA 算法的终止条件,即可获得最佳的 Transformer-BiLSTM 模型参数。
5. 实验与结果
为了验证 ZOA 优化 Transformer-BiLSTM 模型的有效性,本文在多个公开数据集上进行了实验,并与其他优化算法进行了对比。
实验结果表明,与其他优化算法相比,ZOA 优化后的 Transformer-BiLSTM 模型在多个数据集上均取得了更好的预测效果,其预测精度明显提高。
6. 结论
本文提出了一种基于 ZOA 优化的 Transformer-BiLSTM 模型,用于负荷数据回归预测。该方法利用 ZOA 算法的全局搜索能力,对模型参数进行优化,提升了模型预测精度。实验结果表明,该方法在多个数据集上均取得了优异的预测效果,为电力系统负荷预测提供了新的思路和方法。
7. 未来展望
未来研究方向包括:
-
探究其他优化算法,进一步提升模型预测精度。
-
研究模型的鲁棒性,提高模型对噪声数据的适应性。
-
将模型应用于其他时间序列预测任务,如风电功率预测、电力负荷需求预测等。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类