【独家首发】Matlab实现海鸥优化算法SOA优化Transformer-BiLSTM实现负荷数据回归预测

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

负荷预测在电力系统中扮演着至关重要的角色,其准确性直接影响着电力系统的安全、经济性和可靠性。随着电力系统日益复杂化和智能化,传统预测方法已难以满足实际需求,而深度学习技术凭借其强大的非线性建模能力,为负荷预测提供了新的思路。本文将着重探讨海鸥优化算法(SOA)与Transformer-BiLSTM模型相结合,实现负荷数据回归预测,并利用Matlab进行算法实现和验证。

1. 负荷数据回归预测概述

负荷数据回归预测旨在利用历史负荷数据,建立预测模型,预测未来一段时间内的负荷变化趋势。传统的回归预测方法包括线性回归、支持向量机等,但这些方法在处理非线性、多变量时间序列数据时存在局限性。

2. Transformer-BiLSTM模型

Transformer-BiLSTM模型结合了Transformer和BiLSTM的优势,能够有效处理长序列数据中的时间依赖关系和复杂特征。

  • Transformer: Transformer模型擅长捕捉长距离依赖关系,通过自注意力机制,可以有效提取序列数据中的全局特征,克服了传统RNN模型在处理长序列数据时梯度消失的问题。

  • BiLSTM: BiLSTM模型可以同时捕捉时间序列数据中的正向和反向信息,提高模型对数据特征的提取能力。

3. 海鸥优化算法

海鸥优化算法(SOA)是一种基于群体智能的新型优化算法,其灵感来源于海鸥觅食的行为。SOA算法具有以下特点:

  • 全局搜索能力强: SOA算法中个体之间通过相互学习和竞争,可以快速探索全局最优解。

  • 易于实现: SOA算法参数较少,易于实现和调试。

  • 收敛速度快: SOA算法收敛速度较快,能够在较短时间内找到较优解。

4. SOA优化Transformer-BiLSTM模型

本文提出将SOA算法应用于Transformer-BiLSTM模型的优化,以提高模型的预测精度。具体步骤如下:

  • 模型初始化: 随机初始化Transformer-BiLSTM模型的参数。

  • 目标函数: 定义模型的预测误差作为优化目标函数。

  • SOA算法优化: 利用SOA算法对模型参数进行优化,找到最佳参数组合,使预测误差最小化。

  • 预测: 利用优化后的模型进行负荷数据预测。

5. Matlab实现

本文利用Matlab软件实现了SOA优化Transformer-BiLSTM模型的负荷数据回归预测。具体步骤如下:

  • 数据预处理: 对原始负荷数据进行清洗、标准化等预处理。

  • 模型训练: 利用训练数据训练Transformer-BiLSTM模型,并使用SOA算法对模型参数进行优化。

  • 模型评估: 利用测试数据评估模型的预测精度,计算预测误差和评价指标。

6. 实验结果分析

通过对真实负荷数据的实验验证,结果表明:

  • SOA优化后的Transformer-BiLSTM模型比传统模型具有更高的预测精度。

  • 模型能够有效捕捉负荷数据中的非线性特征和季节性变化。

  • SOA算法能够快速找到最优参数组合,提高模型训练效率。

7. 结论

本文提出了一种基于SOA优化Transformer-BiLSTM模型的负荷数据回归预测方法,并利用Matlab进行了算法实现和验证。实验结果表明该方法有效提升了负荷预测精度,为电力系统安全运行和智能电网发展提供了新的思路。未来将进一步研究更先进的深度学习模型和优化算法,以实现更精准的负荷预测。

⛳️ 运行结果

📣 部分代码

%%  数据分析num_size = 0.8;                              % 训练集占数据集比例outdim = 2;                                  % 最后一列为输出num_samples = size(res, 1);                  % 样本个数res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值