✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
负荷预测在电力系统中扮演着至关重要的角色,其准确性直接影响着电力系统的安全、经济性和可靠性。随着电力系统日益复杂化和智能化,传统预测方法已难以满足实际需求,而深度学习技术凭借其强大的非线性建模能力,为负荷预测提供了新的思路。本文将着重探讨海鸥优化算法(SOA)与Transformer-BiLSTM模型相结合,实现负荷数据回归预测,并利用Matlab进行算法实现和验证。
1. 负荷数据回归预测概述
负荷数据回归预测旨在利用历史负荷数据,建立预测模型,预测未来一段时间内的负荷变化趋势。传统的回归预测方法包括线性回归、支持向量机等,但这些方法在处理非线性、多变量时间序列数据时存在局限性。
2. Transformer-BiLSTM模型
Transformer-BiLSTM模型结合了Transformer和BiLSTM的优势,能够有效处理长序列数据中的时间依赖关系和复杂特征。
-
Transformer: Transformer模型擅长捕捉长距离依赖关系,通过自注意力机制,可以有效提取序列数据中的全局特征,克服了传统RNN模型在处理长序列数据时梯度消失的问题。
-
BiLSTM: BiLSTM模型可以同时捕捉时间序列数据中的正向和反向信息,提高模型对数据特征的提取能力。
3. 海鸥优化算法
海鸥优化算法(SOA)是一种基于群体智能的新型优化算法,其灵感来源于海鸥觅食的行为。SOA算法具有以下特点:
-
全局搜索能力强: SOA算法中个体之间通过相互学习和竞争,可以快速探索全局最优解。
-
易于实现: SOA算法参数较少,易于实现和调试。
-
收敛速度快: SOA算法收敛速度较快,能够在较短时间内找到较优解。
4. SOA优化Transformer-BiLSTM模型
本文提出将SOA算法应用于Transformer-BiLSTM模型的优化,以提高模型的预测精度。具体步骤如下:
-
模型初始化: 随机初始化Transformer-BiLSTM模型的参数。
-
目标函数: 定义模型的预测误差作为优化目标函数。
-
SOA算法优化: 利用SOA算法对模型参数进行优化,找到最佳参数组合,使预测误差最小化。
-
预测: 利用优化后的模型进行负荷数据预测。
5. Matlab实现
本文利用Matlab软件实现了SOA优化Transformer-BiLSTM模型的负荷数据回归预测。具体步骤如下:
-
数据预处理: 对原始负荷数据进行清洗、标准化等预处理。
-
模型训练: 利用训练数据训练Transformer-BiLSTM模型,并使用SOA算法对模型参数进行优化。
-
模型评估: 利用测试数据评估模型的预测精度,计算预测误差和评价指标。
6. 实验结果分析
通过对真实负荷数据的实验验证,结果表明:
-
SOA优化后的Transformer-BiLSTM模型比传统模型具有更高的预测精度。
-
模型能够有效捕捉负荷数据中的非线性特征和季节性变化。
-
SOA算法能够快速找到最优参数组合,提高模型训练效率。
7. 结论
本文提出了一种基于SOA优化Transformer-BiLSTM模型的负荷数据回归预测方法,并利用Matlab进行了算法实现和验证。实验结果表明该方法有效提升了负荷预测精度,为电力系统安全运行和智能电网发展提供了新的思路。未来将进一步研究更先进的深度学习模型和优化算法,以实现更精准的负荷预测。
⛳️ 运行结果
📣 部分代码
%% 数据分析
num_size = 0.8; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类