✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着电力系统规模的不断扩大和电力市场竞争的日益激烈,准确预测负荷变化趋势对于电力系统安全稳定运行至关重要。传统的负荷预测方法往往受限于模型的复杂度和数据的非线性特性,难以满足实际应用需求。近年来,深度学习技术为负荷预测带来了新的突破,特别是Transformer和GRU网络在处理时序数据方面展现出优越性。本文提出了一种基于雪融优化算法 (SAO) 优化Transformer-GRU模型的负荷数据回归预测算法 (SAO-Transformer-GRU),并利用Matlab编程实现。该算法通过SAO算法优化Transformer-GRU模型的参数,提升了模型的预测精度和泛化能力。通过对实际负荷数据进行仿真实验,结果表明SAO-Transformer-GRU算法相比于传统算法以及其他深度学习模型,具有更低的预测误差和更高的预测精度,在实际应用中具有较高的可行性和有效性。
关键词: 负荷预测;Transformer;GRU;雪融优化算法;Matlab
1. 引言
负荷预测作为电力系统运行调度、电力市场交易、电力投资决策的重要环节,对于保证电力系统安全稳定运行具有重要意义。准确预测负荷变化趋势,可以有效提高电力资源的利用效率,降低电力系统运行成本,避免电力系统出现供需失衡。
传统的负荷预测方法主要包括统计分析法、灰色预测法、神经网络法等。统计分析法通常基于历史数据进行统计分析,无法有效处理数据的非线性特性。灰色预测法适用于时间序列数据,但其预测精度有限。神经网络法能够学习数据之间的复杂关系,但其训练过程容易陷入局部最优,且模型参数优化难度较大。
近年来,深度学习技术在图像识别、自然语言处理等领域取得了巨大成功,也为负荷预测带来了新的突破。特别是Transformer和GRU网络,在处理时序数据方面展现出优越性。Transformer模型能够有效捕捉时间序列数据的长程依赖关系,而GRU网络可以有效处理数据中的非线性特征。
然而,现有的深度学习模型在负荷预测中仍然存在一些不足。例如,模型参数优化问题、过度拟合问题、数据噪声的影响等。为了解决这些问题,本文提出了一种基于雪融优化算法 (SAO) 优化Transformer-GRU模型的负荷数据回归预测算法 (SAO-Transformer-GRU)。该算法通过SAO算法对Transformer-GRU模型的参数进行优化,提升了模型的预测精度和泛化能力。
2. 算法原理
2.1 Transformer模型
Transformer模型是一种基于注意力机制的深度学习模型,能够有效捕捉时间序列数据的长程依赖关系。Transformer模型主要包含编码器和解码器两部分,编码器将输入序列转换成特征向量,解码器根据特征向量生成预测序列。
2.2 GRU模型
GRU模型是一种循环神经网络,能够有效处理数据中的非线性特征。GRU模型通过门控机制控制信息的传递,从而避免梯度消失问题。
2.3 雪融优化算法 (SAO)
SAO算法是一种基于群体的优化算法,其灵感来源于自然界中雪融化过程。SAO算法通过模拟雪融化的过程,不断更新粒子群的位置和速度,最终找到最优解。
2.4 SAO-Transformer-GRU算法
SAO-Transformer-GRU算法利用SAO算法优化Transformer-GRU模型的参数,提升模型的预测精度和泛化能力。具体步骤如下:
-
初始化Transformer-GRU模型参数和SAO算法参数。
-
利用SAO算法对Transformer-GRU模型参数进行优化,目标函数为预测误差的平方和。
-
更新Transformer-GRU模型参数。
-
重复步骤2-3,直到达到停止条件。
3. Matlab实现
本文利用Matlab编程实现SAO-Transformer-GRU算法,主要步骤如下:
-
导入负荷数据,并将其分为训练集和测试集。
-
初始化Transformer-GRU模型参数和SAO算法参数。
-
使用训练集训练SAO-Transformer-GRU模型。
-
利用测试集评估模型预测精度。
4. 仿真实验
本文采用某电力系统实际负荷数据进行仿真实验,比较了SAO-Transformer-GRU算法、传统方法以及其他深度学习模型的预测精度。结果表明,SAO-Transformer-GRU算法的预测精度明显优于其他算法,预测误差更低,模型泛化能力更强。
5. 结论
本文提出了一种基于雪融优化算法 (SAO) 优化Transformer-GRU模型的负荷数据回归预测算法 (SAO-Transformer-GRU),并利用Matlab编程实现。仿真实验结果表明,该算法能够有效提升负荷预测精度,在实际应用中具有较高的可行性和有效性。
6. 未来工作
未来将继续研究以下几个方面:
-
研究不同类型负荷数据的预测方法。
-
探索其他优化算法对Transformer-GRU模型进行优化。
-
将该算法应用于电力系统其他方面,例如风电功率预测、电力设备故障诊断等。
⛳️ 运行结果
🔗 参考文献
[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].
[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类