【JCR一区级】Matlab实现雪融优化算法SAO-Transformer-GRU负荷数据回归预测算法研究

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

随着电力系统规模的不断扩大和电力市场竞争的日益激烈,准确预测负荷变化趋势对于电力系统安全稳定运行至关重要。传统的负荷预测方法往往受限于模型的复杂度和数据的非线性特性,难以满足实际应用需求。近年来,深度学习技术为负荷预测带来了新的突破,特别是Transformer和GRU网络在处理时序数据方面展现出优越性。本文提出了一种基于雪融优化算法 (SAO) 优化Transformer-GRU模型的负荷数据回归预测算法 (SAO-Transformer-GRU),并利用Matlab编程实现。该算法通过SAO算法优化Transformer-GRU模型的参数,提升了模型的预测精度和泛化能力。通过对实际负荷数据进行仿真实验,结果表明SAO-Transformer-GRU算法相比于传统算法以及其他深度学习模型,具有更低的预测误差和更高的预测精度,在实际应用中具有较高的可行性和有效性。

关键词: 负荷预测;Transformer;GRU;雪融优化算法;Matlab

1. 引言

负荷预测作为电力系统运行调度、电力市场交易、电力投资决策的重要环节,对于保证电力系统安全稳定运行具有重要意义。准确预测负荷变化趋势,可以有效提高电力资源的利用效率,降低电力系统运行成本,避免电力系统出现供需失衡。

传统的负荷预测方法主要包括统计分析法、灰色预测法、神经网络法等。统计分析法通常基于历史数据进行统计分析,无法有效处理数据的非线性特性。灰色预测法适用于时间序列数据,但其预测精度有限。神经网络法能够学习数据之间的复杂关系,但其训练过程容易陷入局部最优,且模型参数优化难度较大。

近年来,深度学习技术在图像识别、自然语言处理等领域取得了巨大成功,也为负荷预测带来了新的突破。特别是Transformer和GRU网络,在处理时序数据方面展现出优越性。Transformer模型能够有效捕捉时间序列数据的长程依赖关系,而GRU网络可以有效处理数据中的非线性特征。

然而,现有的深度学习模型在负荷预测中仍然存在一些不足。例如,模型参数优化问题、过度拟合问题、数据噪声的影响等。为了解决这些问题,本文提出了一种基于雪融优化算法 (SAO) 优化Transformer-GRU模型的负荷数据回归预测算法 (SAO-Transformer-GRU)。该算法通过SAO算法对Transformer-GRU模型的参数进行优化,提升了模型的预测精度和泛化能力。

2. 算法原理

2.1 Transformer模型

Transformer模型是一种基于注意力机制的深度学习模型,能够有效捕捉时间序列数据的长程依赖关系。Transformer模型主要包含编码器和解码器两部分,编码器将输入序列转换成特征向量,解码器根据特征向量生成预测序列。

2.2 GRU模型

GRU模型是一种循环神经网络,能够有效处理数据中的非线性特征。GRU模型通过门控机制控制信息的传递,从而避免梯度消失问题。

2.3 雪融优化算法 (SAO)

SAO算法是一种基于群体的优化算法,其灵感来源于自然界中雪融化过程。SAO算法通过模拟雪融化的过程,不断更新粒子群的位置和速度,最终找到最优解。

2.4 SAO-Transformer-GRU算法

SAO-Transformer-GRU算法利用SAO算法优化Transformer-GRU模型的参数,提升模型的预测精度和泛化能力。具体步骤如下:

  1. 初始化Transformer-GRU模型参数和SAO算法参数。

  2. 利用SAO算法对Transformer-GRU模型参数进行优化,目标函数为预测误差的平方和。

  3. 更新Transformer-GRU模型参数。

  4. 重复步骤2-3,直到达到停止条件。

3. Matlab实现

本文利用Matlab编程实现SAO-Transformer-GRU算法,主要步骤如下:

  1. 导入负荷数据,并将其分为训练集和测试集。

  2. 初始化Transformer-GRU模型参数和SAO算法参数。

  3. 使用训练集训练SAO-Transformer-GRU模型。

  4. 利用测试集评估模型预测精度。

4. 仿真实验

本文采用某电力系统实际负荷数据进行仿真实验,比较了SAO-Transformer-GRU算法、传统方法以及其他深度学习模型的预测精度。结果表明,SAO-Transformer-GRU算法的预测精度明显优于其他算法,预测误差更低,模型泛化能力更强。

5. 结论

本文提出了一种基于雪融优化算法 (SAO) 优化Transformer-GRU模型的负荷数据回归预测算法 (SAO-Transformer-GRU),并利用Matlab编程实现。仿真实验结果表明,该算法能够有效提升负荷预测精度,在实际应用中具有较高的可行性和有效性。

6. 未来工作

未来将继续研究以下几个方面:

  1. 研究不同类型负荷数据的预测方法。

  2. 探索其他优化算法对Transformer-GRU模型进行优化。

  3. 将该算法应用于电力系统其他方面,例如风电功率预测、电力设备故障诊断等。

⛳️ 运行结果

🔗 参考文献

[1] 郑林江,龙颢.一种基于Transformer框架的多变量长序列时间序列预测模型的构建方法:CN202210162689.2[P].CN202210162689.2[2024-07-19].

[2] 蔡美玲,汪家喜,刘金平,等.基于Transformer GAN架构的多变量时间序列异常检测[J].中国科学:信息科学, 2023, 53(5):972-992.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值