【Mppt】PSC 下光伏阵列的Simulink 模型

✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

摘要: 本文详细阐述了在Simulink平台下构建光伏阵列模型,并结合扰动观测法(Perturb and Observe, P&O)最大功率点跟踪(Maximum Power Point Tracking, MPPT)算法进行仿真分析的过程。文章首先介绍了光伏阵列的数学模型,包括单晶硅太阳能电池的等效电路模型以及光伏阵列的并联和串联特性。其次,详细描述了P&O算法的实现原理及其在Simulink中的具体构建方法,并对算法参数进行了分析和优化。最后,通过仿真结果展示了P&O算法在不同光照强度和温度条件下的MPPT性能,并对仿真结果进行了深入分析,验证了模型的有效性和算法的可靠性。

关键词: 光伏阵列;MPPT;P&O算法;Simulink;仿真

1. 引言

随着全球能源危机的日益加剧和环境保护意识的提高,光伏发电技术得到了广泛的应用。最大功率点跟踪(MPPT)技术是提高光伏系统效率的关键,其核心在于实时跟踪光伏阵列的最大功率点(Maximum Power Point, MPP),并使光伏阵列始终工作在MPP状态,从而最大限度地提高能量转换效率。扰动观测法(P&O)作为一种经典的MPPT算法,具有结构简单、易于实现等优点,被广泛应用于实际工程中。本文采用Simulink平台构建光伏阵列模型,并结合P&O算法进行仿真分析,旨在验证模型的准确性和算法的有效性。

2. 光伏阵列模型的建立

光伏阵列是由多个太阳能电池单元串联和并联连接而成的。单个太阳能电池的输出特性可以用其等效电路模型来描述,该模型通常包括一个电流源、一个串联电阻和一个并联电阻。其I-V特性曲线可以用以下方程描述:

I = Iph - Io * [exp((V + Rsh * I) / (n * Vt)) - 1] - (V + Rsh * I) / Rsh

其中,I为输出电流,V为输出电压,Iph为光生电流,Io为反向饱和电流,Rsh为并联电阻,Rs为串联电阻,n为理想因子,Vt为热电压 (Vt = kT/q,k为玻尔兹曼常数,T为绝对温度,q为电子电荷)。 Iph,Io,Rs,Rsh和n等参数会受到光照强度和温度的影响,其关系式通常通过实验数据拟合得到。

在Simulink中,我们可以利用MATLAB提供的模块来构建太阳能电池的等效电路模型。通过将多个太阳能电池单元按照实际光伏阵列的串并联方式连接,即可构建完整的阵列模型。为了提高模型的精度,可以考虑引入温度对参数的影响,并使用查表法或更复杂的数学模型来描述参数随温度和光照强度的变化。

3. P&O 算法的实现

P&O算法是一种基于梯度下降法的MPPT算法。其基本思想是通过不断地扰动光伏阵列的工作电压,并观察输出功率的变化,来判断当前工作点是否位于MPP。如果输出功率增加,则继续沿相同方向扰动;如果输出功率减小,则改变扰动方向。其算法流程如下:

  1. 初始化:设定初始扰动步长 ΔV 和采样时间 Ts。

  2. 测量:测量当前时刻的光伏阵列的电压 V 和电流 I,计算输出功率 P = V * I。

  3. 扰动:将电压扰动 ΔV,得到新的电压 V' = V ± ΔV。

  4. 比较:比较扰动前后的功率 P 和 P' = V' * I'。

  5. 判断:如果 P' > P,则继续沿相同方向扰动;如果 P' < P,则改变扰动方向。

  6. 更新:更新电压 V = V',并重复步骤2-5,直到达到MPP。

在Simulink中,我们可以利用其提供的模块(如比较器、乘法器、积分器等)来实现P&O算法。为了提高算法的效率和稳定性,需要合理选择扰动步长 ΔV 和采样时间 Ts。过大的扰动步长可能会导致系统振荡,而过小的扰动步长则会降低算法的收敛速度。

4. Simulink 模型仿真与结果分析

基于上述的光伏阵列模型和P&O算法,我们在Simulink平台上搭建了完整的MPPT系统模型。通过仿真,我们可以分析P&O算法在不同光照强度和温度条件下的MPPT性能。

仿真结果显示,P&O算法能够有效地跟踪MPP。在不同光照强度下,算法都能快速收敛到MPP附近,并保持在MPP附近工作。温度变化对MPP的影响也得到了有效的补偿。然而,P&O算法也存在一些缺点,例如在MPP附近存在振荡现象,以及对快速变化的光照条件响应不够迅速。

为了进一步提高算法的性能,可以考虑一些改进措施,例如采用自适应步长调整策略,或者结合其他MPPT算法,例如增量电导法(Incremental Conductance, IncCond)等。

5. 结论

本文详细介绍了在Simulink平台下构建光伏阵列模型并结合P&O算法进行MPPT仿真分析的过程。仿真结果验证了模型的有效性和P&O算法的可靠性。通过对算法参数的优化和改进,可以进一步提高MPPT系统的效率和稳定性。未来的研究可以集中在开发更高效、更稳定的MPPT算法,以及考虑更复杂的系统模型,例如考虑光伏阵列的阴影效应和部分遮挡等因素的影响。 这将有助于提高光伏系统的整体性能和可靠性,为光伏发电的广泛应用提供技术支持。

⛳️ 运行结果

🔗 参考文献

[1]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报, 2005, 17(5):4.DOI:10.3969/j.issn.1004-731X.2005.05.058.

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值