时空预测+特征分解!高性能!EMD-Transformer和Transformer多变量交通流量时空预测对比

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真合作可私信或扫描文章底部二维码。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🎁 私信完整代码和数据获取及论文数模仿真定制

🔥 内容介绍

交通流量预测作为智能交通系统 (ITS) 的核心组成部分,其准确性和效率直接影响着城市交通的运行效率和人们的出行体验。近年来,深度学习技术,特别是Transformer模型,在时间序列预测领域展现出强大的能力。然而,交通流量数据通常具有非平稳性、多变量性和复杂时空依赖性等特点,单纯依靠Transformer模型可能无法充分挖掘数据内在的规律,从而限制预测精度。本文将深入探讨基于经验模态分解 (Empirical Mode Decomposition, EMD) 的EMD-Transformer模型和传统Transformer模型在多变量交通流量时空预测中的性能差异,并分析其背后的原因。

Transformer模型凭借其强大的并行计算能力和对长程依赖关系的捕捉能力,在自然语言处理和时间序列预测领域取得了显著成功。其核心在于自注意力机制 (Self-Attention Mechanism),它能够有效地捕捉序列中不同元素之间的关系,而无需依赖循环或卷积操作。然而,在应用于交通流量预测时,Transformer模型也面临一些挑战。首先,交通流量数据通常是非平稳的,存在趋势项、季节性波动和随机噪声等多种成分。其次,多变量交通流量数据之间存在复杂的时空相关性,单一的Transformer模型可能难以有效地捕捉这些复杂的关联。最后,高维度的多变量数据可能会导致模型训练效率低下,甚至出现过拟合现象。

为了克服上述挑战,本文引入了EMD算法对原始交通流量数据进行预处理。EMD是一种自适应信号分解方法,它能够将非平稳信号分解成一系列具有不同时间尺度的本征模态函数 (Intrinsic Mode Functions, IMFs) 和一个残余项。每个IMF代表信号中不同时间尺度的特征成分,例如趋势项、季节性波动等。通过对原始数据进行EMD分解,可以有效地去除噪声,分离不同尺度的特征,从而提高模型的预测精度。

EMD-Transformer模型的工作流程如下:首先,利用EMD算法对多变量交通流量数据进行分解,得到多个IMFs和一个残余项。然后,分别将每个IMF和残余项输入到独立的Transformer模型进行预测。最后,将各个Transformer模型的预测结果进行叠加,得到最终的预测结果。这种方法有效地将复杂的交通流量数据分解成多个相对简单的子序列,从而简化了预测任务,提高了模型的预测精度和泛化能力。

相比之下,传统的Transformer模型直接对原始的多变量交通流量数据进行建模。虽然Transformer模型具有强大的特征提取能力,但它需要处理大量的噪声和复杂的时空依赖关系,这可能会降低模型的预测精度和效率。此外,高维度的输入数据可能会导致模型训练的计算复杂度显著增加。

为了进行公平的对比,本文采用相同的评价指标,例如均方根误差 (RMSE)、平均绝对误差 (MAE) 和均方误差 (MSE),对EMD-Transformer模型和传统Transformer模型的预测性能进行评估。实验结果表明,EMD-Transformer模型在大多数情况下都优于传统的Transformer模型。这主要是因为EMD分解有效地降低了数据复杂性,分离了不同尺度的特征,从而提高了模型的学习效率和预测精度。此外,EMD-Transformer模型的计算效率也得到了提升,因为每个Transformer模型只需要处理相对低维度的子序列数据。

然而,EMD-Transformer模型也存在一些局限性。EMD算法本身存在一些问题,例如模态混叠现象,这可能会影响分解结果的准确性。此外,EMD-Transformer模型的计算复杂度仍然较高,特别是在处理高维数据时。未来的研究可以关注改进EMD算法,例如结合其他信号分解方法,以及探索更有效的模型架构,例如结合卷积神经网络 (CNN) 或图神经网络 (GNN) 来提高模型的性能和效率。

总之,本文通过对比EMD-Transformer模型和传统Transformer模型在多变量交通流量时空预测中的性能,证实了EMD预处理的有效性。EMD分解可以有效地降低数据复杂性,分离不同尺度的特征,从而提高Transformer模型的预测精度和效率。 然而,EMD方法自身的局限性以及模型计算复杂度的挑战仍然需要进一步的研究和改进。 未来研究方向可以集中于改进EMD算法,探索更有效的特征提取和模型融合方法,以构建更高性能、更鲁棒的交通流量时空预测模型,为智能交通系统的构建提供更可靠的技术支持。

⛳️ 运行结果

图片

图片

图片

图片

图片

图片

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值