【高斯烟羽模型】烟囱排放污染物烟羽扩散模型Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

高斯烟羽模型是环境科学领域中广泛应用于预测烟囱排放污染物扩散的一种经验模型。其基于统计学原理,假设污染物在烟囱排放后,遵循高斯分布规律在水平和垂直方向上进行扩散。尽管该模型存在一定的局限性,但其简洁易用、计算量较小,且能提供对污染物浓度分布的初步估计,使其成为环境影响评价和污染控制方案设计中的重要工具。本文将深入探讨高斯烟羽模型的原理、适用条件、参数确定方法以及模型的局限性及其改进方向。

高斯烟羽模型的核心思想是将污染物排放源视为一个点源,假设污染物在水平风的作用下,沿下风向输送,同时由于湍流扩散作用,在垂直和水平方向上发生扩散,形成一个类似高斯分布的烟羽。其数学表达式通常描述为:

C(x, y, z) = Q / (2πσyσzU) * exp(-(y²/2σy²) - ((z-H)²/2σz²))

其中:

  • C(x, y, z) 表示坐标(x, y, z)处的污染物浓度;

  • Q 表示污染物的排放速率;

  • U 表示平均风速;

  • σy 和 σz 分别表示水平和垂直方向上的扩散系数,它们是距离下风向距离x的函数,反映了湍流扩散的强度;

  • H 表示有效烟囱高度,它考虑了烟囱物理高度以及烟气浮力对烟羽上升的影响;

  • x, y, z 分别表示下风向距离、横风向距离和垂直高度。

上述公式描述的是一个稳定的、均匀的地形条件下的烟羽扩散情况。在实际应用中,需要根据具体情况对模型进行修正。例如,对于复杂地形条件,需要考虑地形对风场和扩散的影响,可以采用修正的高斯模型或数值模拟方法;对于不稳定大气条件,需要考虑大气稳定度对扩散系数的影响,Pasquill-Gifford曲线是常用的确定扩散系数的方法之一,它根据大气稳定度类别来选择不同的扩散参数。此外,还需考虑反射边界条件,即地面反射对污染物浓度的影响。

高斯烟羽模型中的关键参数包括排放速率Q、平均风速U、有效烟囱高度H以及扩散系数σy和σz。其中,排放速率可以通过现场测量或工艺计算获得;平均风速可以通过气象观测数据获取;有效烟囱高度则需要考虑烟囱物理高度、烟气出口速度、大气温度梯度等因素进行计算,可以使用布里格斯公式等经验公式进行估算。扩散系数的确定则更为复杂,通常采用Pasquill-Gifford曲线或其他经验公式,这些公式需要根据大气稳定度类别、下风向距离等参数进行选择。大气稳定度类别通常通过Pasquill稳定度分类方法确定,该方法考虑了太阳辐射、风速和云量等气象参数。

尽管高斯烟羽模型在污染物扩散模拟中具有广泛的应用,但其也存在一定的局限性。首先,该模型假设污染物排放源为点源,这对于实际情况中的面源或体源排放并不适用。其次,模型假设大气是均匀稳定的,忽略了大气湍流的复杂性和非稳定性对扩散的影响。此外,模型没有考虑污染物的化学转化和沉降等过程,这会影响预测结果的准确性。对于复杂地形、复杂气象条件以及涉及化学反应的污染物扩散问题,高斯烟羽模型的适用性受到限制。

为了提高高斯烟羽模型的精度和适用范围,近年来研究人员进行了大量的改进工作。例如,发展了考虑地形影响的修正高斯模型,引入了非高斯扩散模型,以及将高斯模型与数值模拟方法相结合等。这些改进方法在一定程度上提高了模型的预测精度,但同时也增加了模型的复杂性和计算量。

综上所述,高斯烟羽模型作为一种简便易用的污染物扩散模拟工具,在环境影响评价和污染控制方案设计中具有重要的应用价值。然而,在实际应用中需要根据具体情况选择合适的模型参数和修正方法,并充分认识到模型的局限性,才能获得较为准确可靠的预测结果。未来,随着大气科学和计算技术的不断发展,高斯烟羽模型将会得到进一步的完善和改进,为环境保护提供更有效的技术支撑。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值