✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真合作可私信或扫描文章底部二维码。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 本文探讨了基于高斯烟羽模型模拟烟囱排放污染物扩散的原理及方法,并运用Matlab软件进行数值模拟。首先,详细阐述了高斯烟羽模型的基本假设、公式推导以及模型中关键参数的确定方法,包括大气稳定度分类、风速、排放参数等。随后,介绍了Matlab程序的设计思路和代码实现,重点关注了模型的数值求解和结果的可视化。最后,通过案例分析,展示了模拟结果,并对模型的适用性、局限性以及未来改进方向进行了讨论,为环境影响评价和污染物排放控制提供理论支撑和技术参考。
关键词: 高斯烟羽模型;Matlab;污染物扩散;大气稳定度;数值模拟
1. 引言
随着工业化进程的不断加快,大气污染问题日益突出。烟囱排放是重要的污染源之一,准确预测和评估其污染物扩散规律对环境保护和公众健康至关重要。高斯烟羽模型作为一种经典的大气扩散模型,由于其计算简便、易于理解和应用,被广泛应用于预测各种污染物的浓度分布。本文旨在利用Matlab软件平台,构建基于高斯烟羽模型的污染物扩散模拟系统,并通过案例分析验证其有效性。
2. 高斯烟羽模型理论基础
高斯烟羽模型的基本假设是:污染物在烟囱排放后,在大气中呈高斯分布扩散,其浓度沿风向呈正态分布,垂直方向和水平方向也呈正态分布。该模型考虑了风速、大气稳定度、烟囱参数等因素对污染物扩散的影响。
连续点源扩散
连续点源一般指排放大量污染物的烟囱、放散管、通风口等。排放口安置在地面的称为地面点源,处于高空位置的称为高架点源。
1. 大空间点源扩散
高斯扩散公式的建立有如下假设:
①风的平均流场稳定,风速均匀,风向平直;
②y、z轴方向符合正态分布;
③污染物在输送扩散中质量守恒;
④污染源的源强均匀、连续。
如图所示,有效源位于坐标原点o处,平均风向与x轴平行,并与x轴正向同向。假设点源在没有任何障碍物的自由空间扩散,不考虑下垫面的存在。大气中的扩散是具有y与z两个坐标方向的二维正态分布,当两坐标方向的随机变量独立时,分布密度为每个坐标方向的一维正态分布密度函数的乘积。
经过推理得出计算公式:
2. 高架点源扩散
在点源的实际扩散中,污染物可能受到地面障碍物的阻挡,因此应当考虑地面对扩散的影响。处理的方法是,或者假定污染物在扩散过程中的质量不变,到达地面时不发生沉降或化学反应而全部反射;或者污染物在没有反射而被全部吸收,实际情况应在这两者之间。
(1) 高架点源扩散模式
本文基于高斯烟羽模型,利用Matlab软件平台,构建了烟囱排放污染物扩散的数值模拟系统。通过案例分析,验证了模型的有效性,并展示了其在环境影响评价和污染物排放控制中的应用价值。
然而,高斯烟羽模型也存在一些局限性,例如它假设了均匀的平坦地形、稳定的风场以及均匀的湍流强度,这与实际情况存在一定的偏差。未来的研究可以考虑改进模型,例如引入地形影响、考虑不稳定风场和湍流扩散的非均匀性,以及结合更精细的数值模拟方法,例如CFD模拟,以提高模型的精度和适用性。此外,可以结合实际监测数据对模型进行校准和验证,从而提高模型的可靠性。
⛳️ 运行结果
🔗 参考文献
[1] 高梦,朱家明,刘新,等.基于高斯模型对空气污染扩散问题的研究[J].阜阳师范学院学报:自然科学版, 2016, 33(2):5.DOI:10.14096/j.cnki.cn34-1069/n/1004-4329(2016)02-012-05.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类