【Copula】考虑风光联合出力和相关性的Copula场景生成附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

能源结构的转型是全球应对气候变化和实现可持续发展的重要举措。风能和太阳能作为可再生能源的重要组成部分,在全球能源系统中扮演着越来越重要的角色。然而,风能和太阳能的出力具有波动性和间歇性,这给电网的稳定运行和规划带来了挑战。为了有效解决这些挑战,需要建立能够准确模拟风光联合出力场景的模型,从而支持电网的风险评估、容量规划以及运行优化。其中,Copula函数能够有效地刻画多变量之间的相关性,并在构建风光联合出力场景方面展现出显著优势。本文将深入探讨基于Copula函数的风光联合出力场景生成方法,并分析其优势和局限性。

一、风光出力随机性与相关性分析的必要性

风能和太阳能的出力受多种因素的影响,如风速、光照强度、温度和季节变化等。这些因素具有高度的随机性,导致风光出力呈现出明显的波动性和间歇性。因此,传统的电力系统规划和运行方法无法直接应用于大规模风光并网的电力系统。

此外,风能和太阳能的出力之间往往存在一定的相关性。例如,在特定的地理区域,天气系统可能同时影响风速和光照强度,导致风能和太阳能出力呈现正相关关系。另一方面,在不同地理区域,由于气象条件的差异,风能和太阳能的出力可能呈现负相关关系。忽略这种相关性会降低场景生成的精度,从而导致电力系统规划和运行的决策失误。

准确刻画风光出力的随机性和相关性是建立风光联合出力场景模型的关键。通过对历史数据的分析,可以识别影响风光出力的关键因素,并建立相应的概率模型。例如,可以使用Beta分布模拟光伏出力,使用Weibull分布模拟风电出力。然而,仅仅对各个风光电场的出力分别建模,并不能反映它们之间的相关性。因此,需要引入Copula函数来刻画这种相关性,并生成能够反映实际运行情况的联合出力场景。

二、Copula函数在风光场景生成中的应用

Copula函数是一种连接多元分布函数与其一维边缘分布函数的数学工具。它可以将多元随机变量的边缘分布与它们之间的相关结构分离,从而灵活地构建多变量的联合分布。Copula函数的应用主要包括以下几个步骤:

  1. 边缘分布建模: 首先,需要对每个风光电场的出力进行边缘分布建模。可以使用参数化的概率分布函数,如Beta分布、Weibull分布或Gamma分布,也可以使用非参数化的方法,如核密度估计。选择合适的边缘分布模型需要考虑数据的特点和模型的拟合优度。

  2. 选择合适的Copula函数: Copula函数种类繁多,如Gaussian Copula, t-Copula, Clayton Copula, Gumbel Copula, Frank Copula等。不同的Copula函数能够刻画不同的相关结构。例如,Gaussian Copula能够刻画线性相关性,t-Copula能够刻画尾部相关性,Clayton Copula能够刻画下尾相关性,Gumbel Copula能够刻画上尾相关性。选择合适的Copula函数需要考虑数据之间的相关性特点。可以通过可视化分析、相关系数计算或假设检验等方法来辅助Copula函数的选择。

  3. 参数估计: 在选定了Copula函数后,需要对Copula函数的参数进行估计。常用的参数估计方法包括最大似然估计法和矩估计法。最大似然估计法通常具有较高的估计精度,但计算复杂度较高。矩估计法计算简单,但估计精度可能较低。

  4. 场景生成: 在确定了边缘分布和Copula函数后,就可以生成风光联合出力场景。首先,利用Copula函数生成一组服从指定相关结构的均匀分布随机数。然后,将这些均匀分布随机数代入边缘分布函数的逆函数,得到一组服从指定边缘分布和相关结构的风光出力值。

三、Copula函数在风光场景生成中的优势

相比于传统的场景生成方法,Copula函数具有以下显著优势:

  1. 灵活性: Copula函数能够灵活地处理不同边缘分布的随机变量,从而能够适应不同类型的风光出力数据。

  2. 相关性刻画: Copula函数能够准确地刻画多变量之间的相关结构,从而能够生成更贴近实际运行情况的场景。

  3. 场景多样性: 通过调整Copula函数的参数,可以生成不同类型的场景,从而能够更好地评估电力系统的风险。

  4. 边缘分布与相关性的分离: Copula函数能够将边缘分布和相关性分离,使得模型建立和参数估计更加方便。

四、Copula函数在风光场景生成中的局限性

尽管Copula函数在风光场景生成方面具有诸多优势,但也存在一些局限性:

  1. 高维问题: 当风光电场的数量较多时,构建高维Copula函数的计算复杂度会显著增加,参数估计也会变得更加困难。

  2. Copula函数选择: 选择合适的Copula函数是一个挑战。不同的Copula函数能够刻画不同的相关结构,但实际数据之间的相关结构可能非常复杂,难以用单个Copula函数准确描述。

  3. 尾部相关性: 一些Copula函数,如Gaussian Copula,无法刻画尾部相关性,这可能会导致低估极端事件发生的概率。

  4. 静态相关性: Copula函数通常只能刻画静态的相关性,而忽略了相关性随时间变化的可能性。

五、改进Copula场景生成方法的方向

为了克服Copula函数在风光场景生成中的局限性,研究人员提出了许多改进方法:

  1. 维度约简: 采用聚类分析、主成分分析等方法对风光电场进行分组,将高维问题转化为低维问题,从而降低计算复杂度。

  2. 混合Copula: 采用多个Copula函数组合的方式,分别刻画不同类型的相关结构,从而提高模型精度。

  3. 动态Copula: 引入时变参数,建立动态Copula模型,从而刻画相关性随时间变化的可能性。

  4. 结合机器学习: 利用机器学习算法,如神经网络、支持向量机等,自动选择Copula函数和估计参数,从而提高模型的自适应能力。

  5. 场景缩减: 在生成大量场景后,采用场景缩减算法,如K-means聚类、快速前向选择等,减少场景的数量,提高计算效率。

六、总结与展望

基于Copula函数的风光联合出力场景生成方法能够有效地刻画风光出力的随机性和相关性,为电力系统规划和运行提供重要的决策支持。尽管Copula函数存在一些局限性,但通过不断的研究和改进,其应用前景仍然十分广阔。未来的研究方向包括:进一步提高高维Copula模型的计算效率,开发能够自适应选择Copula函数和估计参数的算法,以及探索能够刻画动态相关性的Copula模型。此外,将Copula场景生成方法与其他技术相结合,如随机规划、鲁棒优化等,可以进一步提高电力系统的风险应对能力,促进风能和太阳能的更大规模利用,最终实现能源结构的转型和可持续发展。

总而言之, Copula函数为风光联合出力场景的生成提供了一个强大的工具。通过选择合适的Copula函数,并结合实际的风光出力数据,可以生成能够准确反映风光出力特性和相关性的场景,从而为电力系统的规划、运行和风险评估提供可靠的依据。 随着可再生能源在电力系统中的占比不断提高,Copula场景生成技术将在未来的电力系统中发挥越来越重要的作用。

⛳️ 运行结果

🔗 参考文献

[1] 宋鹏彦.结构整体可靠度方法及RC框架非线性整体抗震可靠度分析[D].哈尔滨工业大学,2012.DOI:10.7666/d.D418762.

[2] 井皓,许建中,徐莹,等.考虑子模块相关性的MMC可靠性分析方法简[J].中国电机工程学报, 2017, 37(13):8.DOI:10.13334/j.0258-8013.pcsee.162173.

[3] 郑娟,高慧敏,王筱萍.基于Copula函数的股票相关性分析系统的设计与实现[J].嘉兴学院学报, 2012, 24(3):6.DOI:10.3969/j.issn.1008-6781.2012.03.008.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值