【无人机控制】基于LPV方法的无人机模型预测控制附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本论文聚焦无人机的精准控制问题,深入研究基于线性变参数(LPV)方法的无人机模型预测控制技术。通过建立精确的无人机 LPV 模型,设计适用于该模型的模型预测控制算法,并进行仿真与实验验证。研究结果表明,所提出的控制策略能够有效应对无人机飞行过程中参数变化和外界干扰,显著提升无人机的控制精度与动态性能,为无人机在复杂环境下的稳定飞行提供了可靠的技术支持。

关键词

无人机;线性变参数(LPV);模型预测控制;动态性能;控制精度

一、引言

1.1 研究背景

随着无人机技术的飞速发展,其在航拍测绘、物资投递、环境监测、军事侦察等众多领域得到了广泛应用。无人机的控制性能直接影响其任务执行的效率与安全性,在实际飞行过程中,无人机面临着诸如飞行姿态变化、大气扰动、负载改变等多种因素导致的系统参数变化和外界干扰,这对无人机的控制策略提出了更高的要求。传统的控制方法在应对这些复杂情况时往往存在局限性,难以实现高精度、高性能的控制。因此,研究更先进、有效的无人机控制方法具有重要的现实意义。

1.2 研究现状

近年来,许多学者致力于无人机控制技术的研究。模型预测控制(Model Predictive Control,MPC)因其能够处理约束条件、利用系统未来信息进行优化控制的特点,在无人机控制领域展现出良好的应用前景。然而,传统的基于固定参数模型的 MPC 在处理无人机参数变化问题时效果不佳。线性变参数(LPV)系统理论能够描述系统参数随某些已知调度变量变化的动态特性,将 LPV 方法与 MPC 相结合,为解决无人机在复杂环境下的控制问题提供了新的思路。目前,已有部分研究尝试将 LPV - MPC 应用于无人机控制,但在模型精确性、算法优化及实际应用等方面仍有进一步提升的空间。

1.3 研究内容与目标

本论文旨在研究基于 LPV 方法的无人机模型预测控制技术。主要研究内容包括:建立准确的无人机 LPV 模型,设计基于该模型的高效模型预测控制算法,并通过仿真和实验对所提出的控制策略进行验证与分析。研究目标是提升无人机在参数变化和干扰环境下的控制精度和动态性能,为无人机的实际应用提供更可靠的控制方案。

二、无人机 LPV 模型建立

2.1 无人机动力学与运动学模型基础

无人机的动力学和运动学模型是建立 LPV 模型的基础。以四旋翼无人机为例,其动力学模型主要包括描述无人机在空间中平动和转动的方程。平动动力学方程描述了无人机受到的推力、重力和空气阻力等力与加速度之间的关系;转动动力学方程则反映了无人机姿态变化与电机力矩之间的联系。运动学模型则用于描述无人机位置和姿态随时间的变化关系。在建立这些模型时,需要考虑无人机的质量、转动惯量、电机推力系数等参数,同时对空气动力学特性进行合理的建模与简化。

2.2 LPV 模型的构建

线性变参数(LPV)模型的核心是将系统的参数表示为随已知调度变量变化的函数。对于无人机而言,可选择飞行高度、飞行速度、姿态角等作为调度变量。通过分析无人机在不同工况下的动力学和运动学特性,利用系统辨识或理论推导的方法,将无人机的非线性模型局部线性化,并将线性化后的模型参数表示为调度变量的函数,从而构建出无人机的 LPV 模型。在构建过程中,需要保证 LPV 模型在不同调度变量取值范围内能够准确描述无人机的动态特性,同时满足模型的稳定性和可辨识性要求。

2.3 模型验证与参数优化

建立好无人机 LPV 模型后,需要对模型进行验证。通过将模型的仿真输出与实际无人机飞行数据或高精度仿真模型的输出进行对比,评估模型的准确性。若模型输出与实际数据存在较大偏差,则需要对模型参数进行优化调整。可以采用最小二乘法、遗传算法等优化算法,以模型输出与实际数据的误差最小化为目标,对 LPV 模型中的参数进行优化,进一步提高模型的精度和可靠性。

三、基于 LPV 模型的无人机模型预测控制算法设计

3.1 模型预测控制基本原理

模型预测控制是一种基于模型的滚动时域优化控制方法。其基本原理包括预测模型、滚动优化和反馈校正三个部分。预测模型用于根据当前系统状态和未来控制输入预测系统未来的输出;滚动优化则在每个采样时刻,基于预测模型,在有限的预测时域内求解一个优化问题,得到当前时刻的最优控制输入序列;反馈校正通过将系统的实际输出与预测输出进行比较,对预测模型进行修正,以提高预测的准确性和控制性能。

3.2 LPV - MPC 算法设计

基于建立的无人机 LPV 模型,设计适用于无人机控制的 LPV - MPC 算法。在设计过程中,首先需要确定预测时域、控制时域等关键参数,这些参数的选择直接影响控制算法的性能和计算量。然后,根据无人机的控制目标(如位置跟踪、姿态稳定等)和约束条件(如电机推力限制、姿态角范围限制等),构建相应的优化目标函数。在每个采样时刻,利用 LPV 模型预测无人机未来的状态,通过求解优化问题得到当前时刻的最优控制输入,实现对无人机的实时控制。同时,为了提高算法的计算效率,可采用一些快速求解优化问题的算法和策略,如内点法、二次规划算法等。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值