基于双树复小波变换的图像多尺度分析及融合策略研究

基于双树复小波变换的图像多尺度分析及融合策略研究

前言

在图像处理领域,多尺度分析是一种重要的技术,广泛应用于图像压缩、去噪、边缘检测和图像融合等方面。双树复小波变换(Dual-Tree Complex Wavelet Transform, DT-CWT)因其具有平移不变性和良好的方向选择性,成为多尺度分析中的一种有效工具。本文将详细探讨双树复小波变换在图像多尺度分解中的应用,并介绍一种基于跨尺度邻域空间频率的高频子带融合策略,通过C++实现该算法,旨在提升图像处理效果。

一、双树复小波变换简介

1.1 双树复小波变换的基本概念

双树复小波变换是一种扩展的小波变换方法,通过两个独立的小波树进行变换,可以在多个方向上进行精确的信号分析。与传统小波变换相比,DT-CWT具有以下优点:

  • 平移不变性:可以更好地保持信号的平移不变性,减少伪影。
  • 方向选择性:在多个方向上进行分析,提高图像的方向敏感性。
  • 复数表示:使用复数系数表示,能够更有效地捕捉图像的相位信息。

1.2 双

  • 19
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
随着多媒体信息技术的高速发展,产生了极其庞大的图像数据。当对这些数量庞大的图像数据进行存储和传送时,利用图像压缩编码技术减少其数据量是很有必要的。本文的研究目的是寻找一种压缩质量较好的图像压缩方法。本文在小波变换图像压缩的理论基础上进行研究,提出了基于双密度双树小波变换图像压缩方法,通过Matlab仿真实验得出了实验结果的比较和分析,最终确认了该方法相比传统的图像压缩方法对图像的压缩质量有明显的优化。   近年来,信息技术和移动通讯的爆炸式发展,使得图像数据的传送有了海量的增长,伴随着高清和超清图像视频的普及,图像压缩编码技术发挥着越来越重要的作用。图像压缩是在确保图像质量的基本要求下,实现尽可能大幅度地减小图像的数据量,当图像本身的数据大比例降低了,它的传输和存储就变得方便容易得多。   如何使用双密度双树小波变换进行图像压缩 小波变换图像压缩编码方法是先通过小波变换图像进行多分辨率分解得到不同空间且不同频率的一系列子图像,再对所得的子图像分别进行系数编码。小波基函数的选择是其中关键的内容,选择不同的小波基函数来进行图像压缩所取得的压缩效果一般都不一样,本论文的研究中选择的是以双密度双树小波变换作为小波基函数。   小波变换在频域以及时域上有着良好的局部化特性,同时能够把图像数据信息定位至任意数量级的精度上。正是因为这些优点,基于小波变换图像压缩编码方法逐渐发展并取代了传统的基于离散余弦变换和其他子带编码技术,成为当今应用广泛并且有着可观发展前景的数据压缩方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_57781768

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值