双树复小波变换Dual-Tree Complex Wavelet Transform在信号处理中的应用

本文展示了双树复小波变换 (Dual-Tree Complex Wavelet Transforms,DTCWT) 在信号、图像和轴承故障诊断方面的应用。 DTCWT 为两个独立的两通道滤波器组,在实际应用用,不能随意选择两棵树中使用的尺度小波滤波器。第一棵树 {h0 ,h1 } 的低通(尺度)和高通(小波)滤波器生成一个尺度函数和小波,另一棵树是由第一棵树的尺度函数的近似希尔伯特变换以及相应的高通滤波器生成的小波函数组成,记作{g0,g1 }。因此由两棵树形成的复值尺度函数和小波函数是近似解析的,因此,DTCWT比DWT具有更小的移位方差和更大的方向选择性。DTCWT的冗余度明显小于未抽取的DWT 的冗余度。本文验证了 DTCWT 的近似移位不变性,DTCWT在2-D和3-D数据中的方向选择性,以及DTCWT变换在图像去噪等方面的应用。

代码见评论区。

MATLAB环境下双树复小波基础及在轴承故障诊断中的应用
程序运行环境为MATLAB R2021B,主要演示双树复小波基础及在轴承故障诊断中的应用。
算法可迁移至金融时间序列,地震信号,语音信号,声信号,生理信号(ECG,EEG,EMG)等一维时间序列信号及二维图像和三维图像。

擅长现代信号处理(改进小波分析系列,改进变分模态分解,改进经验小波变换,改进辛几何模态分解等等),改进机器学习,改进深度学习,机械故障诊断,改进时间序列分析(金融信号,心电信号,振动信号等)
 

双树复小波变换DTCWT基本理论

双树复小波变换DTCWT采用二叉树结构的两路滤波器组进行信号的分解和重构,第一棵树生成实部,第二棵生成虚部,合理设计实、虚部树低通滤波器,满足半采样延迟条件,具有近似平移不变性。两树的滤波器采样频率相同,但是它们之间的延迟恰好是一个采样间隔,这样虚部树中第1层的二抽取恰好采到实部树中二抽取所丢掉的采样值,在获得了复小波变换的平移不变性的同时避免了大量的计算并且具有容易实现的优势。下图为3层双树复小波的分解和重构过程。

3层双树复小波的分解和重构过程

虚线上方实部树变换的小波系数和尺度系数可由式(2)和(3)计算

相关的参考文献如下:

[1]Huang Tongyuan,Xu Jia,Yang Yuling,Han Baoru. Robust Zero-Watermarking Algorithm for Medical Images Using Double-Tree Complex Wavelet Transform and Hessenberg Decomposition[J]. Mathematics,2022,10(7).

[2]Zhou Yilu,Fu Xiaojin. Image Denoising Based on Dual-tree Complex Wavelet Transform and Convolutional Neural Network[J]. Journal of Physics: Conference Series,2021,1995(1).

[3]Lei Wang,Zhiwen Liu,Hongrui Cao,Xin Zhang. Subband averaging kurtogram with dual-tree complex wavelet packet transform

随着多媒体信息技术的高速发展,产生了极其庞大的图像数据。当对这些数量庞大的图像数据进行存储和传送时,利用图像压缩编码技术减少其数据量是很有必要的。本文的研究目的是寻找一种压缩质量较好的图像压缩方法。本文在小波变换与图像压缩的理论基础上进行研究,提出了基于双密度双树复小波变换的图像压缩方法,通过Matlab仿真实验得出了实验结果的比较和分析,最终确认了该方法相比传统的图像压缩方法对图像的压缩质量有明显的优化。   近年来,信息技术和移动通讯的爆炸式发展,使得图像数据的传送有了海量的增长,伴随着高清和超清图像视频的普及,图像压缩编码技术发挥着越来越重要的作用。图像压缩是在确保图像质量的基本要求下,实现尽可能大幅度地减小图像的数据量,当图像本身的数据大比例降低了,它的传输和存储就变得方便容易得多。   如何使用双密度双树复小波变换进行图像压缩 小波变换的图像压缩编码方法是先通过小波变换对图像进行多分辨率分解得到不同空间且不同频率的一系列子图像,再对所得的子图像分别进行系数编码。小波基函数的选择是其中关键的内容,选择不同的小波基函数来进行图像压缩所取得的压缩效果一般都不一样,本论文的研究中选择的是以双密度双树复小波变换作为小波基函数。   小波变换在频域以及时域上有着良好的局部化特性,同时能够把图像数据信息定位至任意数量级的精度上。正是因为这些优点,基于小波变换的图像压缩编码方法逐渐发展并取代了传统的基于离散余弦变换和其他子带编码技术,成为当今应用广泛并且有着可观发展前景的数据压缩方法。
双树复小波变换Dual-Tree Complex Wavelet Transform,DT-CWT)是一种用于图像增强的算法。它是一种多尺度、多方向的小波变换方法,能够提取图像中不同频率和方向的细节信息。 首先,使用Python中的相关库(如PyWavelets)来实现DT-CWT。该库提供了一系列用于小波变换的函数和工具。通过加载图像并对其进行预处理(如灰度化、归一化),可以得到准备进行DT-CWT的输入数据。 接下来,使用DT-CWT算法对图像进行变换。DT-CWT是通过将两个小波滤波器组成一对复数小波滤波器来实现的。这些复数小波滤波器能够分别对输入图像进行低频和高频分量的分解,捕捉图像中的不同细节信息。 在DT-CWT的基础上,可以利用各种图像增强技术对不同频率和方向的图像进行增强。例如,可以通过调节小波系数的阈值来实现图像的去噪和平滑。还可以根据图像的特点,对不同频率和方向的小波系数进行加权,以增强感兴趣的图像细节。 最后,通过逆变换将处理后的小波系数重构成增强后的图像。可以使用Python中的图像处理库(如OpenCV)来实现图像的逆变换和显示。 综上所述,使用Python中的相关库和算法,可以实现双树复小波变换DT-CWT来进行图像增强。该方法可以从不同频率和方向提取图像细节,通过调节阈值和加权系数,可以对图像进行去噪、平滑和增强等处理,最终得到增强后的图像。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值