巧用三进制解决天平称重问题

目录

巧用三进制解决天平称重问题

一、问题背景

二、解题思路分析

1. 进制转换的启发

2. 三进制的特殊处理

3. 运算规则总结

三、代码实现

1. Java 代码示例

2. 代码解释

四、总结


在算法学习中,进制的运用是一个有趣且实用的领域。今天我们就来探讨一道结合了数学与编程思维的天平称重问题,它巧妙地运用了三进制的特性,为我们提供了一种独特的解题思路。

一、问题背景

这道题源自南桥杯竞赛,题目给定了无限个砝码,其重量分别为 1、3、9、27、81……,这些砝码的重量恰好是 3 的指数幂。利用这些砝码,可以组合出任意整数重量的物体,且砝码可放置在天平的左右两个盘。例如,要称重量为 1 的物体,可在左边放一个 1 的砝码,右边放待称物体;称重量为 2 的物体时,一边放 3 的砝码,另一边放待称物体和 1 的砝码。题目要求编程实现,对于用户给定的质量,给出砝码的组合方案,并且规定输出时从大到小给出,用负数表示放在右盘。

二、解题思路分析

1. 进制转换的启发

看到题目中砝码重量是 3 的指数幂,我们自然联想到三进制。回顾二进制在类似称重问题中的应用,例如用 1、2、4、8、16 等 2 的指数幂的砝码称重时,将待称重量转换为二进制,二进制位上的 0 和 1 就对应着砝码的取与不取,从而可以组合出任意整数重量。那么三进制是否也能有类似的应用呢?

2. 三进制的特殊处理

然而,三进制与二进制有所不同。在三进制中,每位有 0、1、2 三种状态。对于砝码不能重复使用的情况,当三进制数某位为 2 时,就需要进行特殊处理。例如,数字 5 转换为三进制是 12,这里的 2 表示需要两个 1 的砝码,但题目不允许砝码重复。此时,我们可以将 2 转换为左盘放一个更高位的砝码(如 3 的一次方即 3),右盘放一个当前位的砝码(即 1),也就是将 5 表示为三进制的 2 - 1(进位后为 1 - 1,再加上更高位的 1),这样就对应了 9 - 3 - 1 的砝码组合。

3. 运算规则总结

对于要称重的数,先将其转换为三进制,然后从右往左处理每一位。如果遇到 2,就将其变为 1,并在下一位进位(如果下一位是 0 则直接加 1,如果是 1 则继续进位处理);如果遇到 3(可能是进位导致),则在当前位插入 0,并在更高位进位(如果数组还有更高位就在下一位加 1,否则在结果列表中插入 1);如果是 0 或 1,则直接转换为数字加入结果列表。最后将处理后的特殊三进制表示恢复为十进制,并按照要求输出砝码组合方案。

三、代码实现

1. Java 代码示例

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;

public class BalanceWeighing {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        // 将输入的数转换为三进制并处理
        List<Integer> result = convertAndProcess(n);
        // 输出砝码组合方案
        printResult(result);
    }

    public static List<Integer> convertAndProcess(int n) {
        // 将数转换为三进制字符串并反转
        String ternary = Integer.toString(n, 3);
        StringBuilder reversedTernary = new StringBuilder(ternary).reverse();
        List<Integer> list = new ArrayList<>();
        for (int i = 0; i < reversedTernary.length(); i++) {
            int digit = reversedTernary.charAt(i) - '0';
            if (digit == 2) {
                list.add(0, 1);
                if (i == reversedTernary.length() - 1) {
                    list.add(0, 1);
                } else {
                    int nextDigit = reversedTernary.charAt(i + 1) - '0';
                    reversedTernary.setCharAt(i + 1, (char) ('0' + (nextDigit + 1) % 3));
                }
            } else if (digit == 3) {
                list.add(0, 0);
                if (i < reversedTernary.length() - 1) {
                    int nextDigit = reversedTernary.charAt(i + 1) - '0';
                    reversedTernary.setCharAt(i + 1, (char) ('0' + (nextDigit + 1) % 3));
                } else {
                    list.add(0, 1);
                }
            } else {
                list.add(0, digit);
            }
        }
        return list;
    }

    public static void printResult(List<Integer> result) {
        StringBuilder output = new StringBuilder();
        int base = 1;
        for (int i = result.size() - 1; i >= 0; i--) {
            int digit = result.get(i);
            if (digit == 1) {
                output.append(base).append(" ");
            } else if (digit == 0) {
                output.append(-base).append(" ");
            }
            base *= 3;
        }
        System.out.println(output.toString().trim());
    }
}

2. 代码解释

  • convertAndProcess方法:首先将输入的整数n转换为三进制字符串,并反转以便从低位开始处理。然后遍历三进制字符串的每一位,根据上述的运算规则进行处理,将处理后的结果存储在list中。
  • printResult方法:将处理后的特殊三进制表示恢复为十进制的砝码组合方案,并按照从大到小的顺序输出,用负数表示放在右盘的砝码。

四、总结

通过这道天平称重问题,我们深入了解了如何巧用三进制来解决实际问题。与暴力法相比,利用进制特性的解法大大提高了效率。暴力法虽然在理解上可能较为直观,但在数据规模较大时会面临超时的问题。这道题不仅让我们掌握了三进制在特定场景下的应用,也提醒我们在解决编程问题时,要善于发现问题背后的数学规律,从而选择更高效的算法。希望大家通过这篇文章,对三进制的运用有更深刻的认识,在算法学习的道路上不断进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值