7 植物背景分离、RGB、HSV特征提取案例(matlab程序)

该文介绍了一种基于MATLAB的叶片图像处理方法,首先将RGB图像转换为HSV空间,利用饱和度阈值进行背景分离,然后通过Canny算子提取边缘,接着进行膨胀、平滑和二值化处理,有效地分离叶片与背景,适用于不同颜色的叶片图像。最后,文章提取了RGB和HSV色彩空间的特征,如平均值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习目标:背景分离和RGB等特征提取

 

1.简述

叶片RGB图像背景精确分离的方法,包括以下图像背景分离方法:S1:选取叶片,所得到的原始图像;S2:采用MATLAB 2016R软件将RGB图像转化为HSV图像,以饱和度0.190.21为界限,将小于界限的图像明度调整为0,并转化为灰度图;S3:用edge函数canny算子对图像边缘进行检测提取;S4:对图像进行膨胀操作并填补边缘缝隙;S5:对空隙填充并采用菱形结构元素对图像进行平滑;S6:将平滑后的图像经中值滤波去除冗余信息;S7:运用bwlabe函数寻找8联通成份并进行二值化处理;S8:将处理后的图像保存为jpg格式图像;本发明对单色叶,杂色叶,多色叶均有最佳的处理效果.   

 

2.代码

clear all;
close all
clc
I = imread('01.jpg');
whos
%%   
I_Gray=rgb2gray(I);
imhist(I_Gray);
I_Bw=im2bw(I,140/255);
figure;
subplot(1,3,1),imshow(I),title('原图');
subplot(1,3,2),imshow(I_Gray),title('灰度图');
subplot(1,3,3),imshow(I_Bw),title('二值图');
I_R=I(:,:,1);
I_G=I(:,:,2);
I_B=I(:,:,3);
%%   R-B背景分割
I_RB=I_R-I_B;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

素馨堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值