【电力系统短期负荷预测】基于ELM、白鲸算法优化ELM、鹭鹰算法优化ELM极限学习机的电力系统短期负荷预测研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

1. 极限学习机(ELM)在电力负荷预测中的应用

2. 白鲸算法(BWO)优化ELM

3. 鹭鹰算法(SBOA)优化ELM

4. 研究方法与实验

数据处理

模型构建与优化

评价指标

5. 研究结果与分析

6. 结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

在电力系统短期负荷预测领域,极限学习机(ELM)作为一种快速且有效的单隐藏层前馈神经网络算法,近年来受到了广泛关注。为了进一步提升预测精度,研究者们尝试采用各种优化算法对ELM进行改进,其中包括白鲸算法(BWO)和鹭鹰算法(SBOA)。以下是对基于ELM、白鲸算法优化ELM和鹭鹰算法优化ELM的电力系统短期负荷预测研究的详细分析。

1. 极限学习机(ELM)在电力负荷预测中的应用

ELM由Huang等人在2006年提出,具有学习速度快、泛化能力强等优点。在电力负荷预测中,ELM能够利用历史负荷数据及其相关因素(如温度、湿度、降雨量等)进行非线性拟合,从而预测未来的负荷变化。然而,传统的ELM模型在输入权重和隐藏层偏置的随机分配上可能导致模型对特定样本数据的过拟合,进而影响其泛化能力。

2. 白鲸算法(BWO)优化ELM

白鲸优化算法是一种新型的元启发式优化算法,模拟了白鲸在海洋中的捕食行为,具有较强的全局搜索能力和局部搜索能力。将BWO应用于ELM的优化中,可以通过调整ELM的输入权重和隐藏层偏置来降低预测误差。研究表明,BWO优化后的ELM模型在电力负荷预测中表现出更高的预测精度和更好的泛化能力。

3. 鹭鹰算法(SBOA)优化ELM

鹭鹰算法是另一种新兴的优化算法,其优化原理可能与BWO不同,但同样具有强大的搜索能力。在电力负荷预测中,采用SBOA优化ELM的权值和阈值,可以进一步提升模型的预测性能。与BWO相比,SBOA可能在某些特定问题上表现出更高的收敛精度和更快的收敛速度。因此,SBOA优化后的ELM模型在电力负荷预测中具有更高的应用潜力。

4. 研究方法与实验

数据处理
  • 数据来源:如《第九届电工数学建模竞赛试题_2016》等,包含负荷数据和天气数据(如最高温度、最低温度、平均温度、相对湿度、降雨量等)。
  • 数据预处理:将负荷数据和天气数据综合处理,划分训练集和测试集。
  • 特征选择:选取影响负荷的关键因素作为输入特征。
模型构建与优化
  • 初始ELM模型构建:使用标准的ELM算法进行初步预测。
  • 优化算法应用:分别采用BWO和SBOA对ELM的权值和阈值进行优化。
  • 对比实验:比较未优化的ELM、BWO优化后的ELM和SBOA优化后的ELM在电力负荷预测中的表现。
评价指标
  • 使用MAPE(平均绝对百分比误差)等常用指标来衡量预测精度。

5. 研究结果与分析

  • 通过实验对比,可以发现SBOA优化后的ELM在电力负荷预测中的表现通常优于BWO优化后的ELM和未优化的ELM。
  • SBOA算法的高效性和准确性在电力负荷预测中得到了验证,能够显著提高预测精度。
  • 然而,不同的优化算法和ELM模型参数可能对预测结果产生不同影响,因此在实际应用中需要根据具体问题进行选择和调整。

6. 结论与展望

基于ELM、BWO优化ELM和SBOA优化ELM的电力系统短期负荷预测研究表明,优化算法的应用可以显著提高ELM模型的预测精度和泛化能力。未来研究可以进一步探索其他优化算法在ELM中的应用,以及结合多种优化算法和模型融合技术来提高预测性能。同时,随着电力市场的不断发展和完善,短期负荷预测在电力系统运行和计划中的重要性将更加凸显,因此需要持续关注和研究相关技术和方法。

📚2 运行结果

数据有详细来源,方便发论文的真实性。数据见第4部分。 

部分代码:

%% 调用BWO优化ELM
[Alpha_score,bestchrom,BWO_trace]=BWOforELM(inputnum,hiddennum,TYPE,activation,inputn,outputn,inputn_test,output_test,outputps);
% 优化后结果分析
figure
set(gca,'looseInset',[0 0 0 0])
plot(BWO_trace,'k-','linewidth',1.6)
title('BWO适应度曲线图','fontsize',12,'fontname','TimesNewRoman');
xlabel('进化代数','fontsize',12,'fontname','TimesNewRoman');ylabel('诊断误差','fontsize',12,'fontname','TimesNewRoman');
x=bestchrom;
%把最优初始阀值权值赋予ELM重新训练与预测
T1  = outputn;
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum)';
%train
W=reshape(w1,hiddennum,inputnum);
Q=size(inputn,2);
BiasMatrix = repmat(B1,1,Q);
tempH = W * inputn + BiasMatrix; 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]成天乐,周胜瑜,李斯,等.基于极限学习机方法的短期负荷预测[J].电力科学与工程, 2013, 29(4):6.DOI:10.3969/j.issn.1672-0792.2013.04.005.

[2]李玲玲,任琦瑛,宁楠,等.基于ISHO-ELM模型的短期电力负荷预测[J].天津工业大学学报, 2023, 42(3):73-80.

[3]范伟,田丽,汪晨,等.基于PSO-ELM模型的短期电力系统负荷预测[J].南阳理工学院学报, 2017, 009(004):12-15.DOI:10.3969/j.issn.1674-5132.2017.04.004.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值