💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究是一项涉及电力系统中相位测量单元(PMU)部署的研究。PMU是一种用于实时监测电力系统状态的设备,可以提供高精度的电力数据,对于电力系统的运行和控制非常重要。在研究中,通过使用BPSO算法,结合电力系统的拓扑结构和负荷分布等信息,寻找最佳的PMU位置配置,以实现电力系统的最佳监测覆盖和控制。
BPSO算法是一种优化算法,灵感来自于粒子群优化(PSO)算法,但在BPSO中,解空间中的每个解都是由二进制编码表示的,因此适用于需要离散解空间的问题,如PMU位置配置问题。
在进行研究时,首先需要定义一个适当的目标函数,用于评估PMU位置配置的质量。目标函数通常会考虑到电力系统的覆盖率、可观测性、控制性能等方面。然后,使用BPSO算法来优化目标函数,寻找最佳的PMU位置配置方案。
研究中需要考虑的一些关键问题包括:
1. 如何定义目标函数,以平衡PMU的覆盖范围和可观测性?
2. 如何考虑电力系统的拓扑结构和负荷分布等信息?
3. 如何选择适当的BPSO参数,以确保算法的收敛性和性能?
4. 如何处理可能存在的约束条件,如PMU数量的限制或安装位置的限制?
通过对这些问题的深入研究和解决,可以为电力系统的监测与控制提供更有效的解决方案,提高电力系统的稳定性、可靠性和安全性。
📚2 运行结果
部分代码:
function [Z, SORI]=IEEE_30_Bus(x1)
Z = zeros(size(x1,1),1);
nVar = size(x1,2);
for ii = 1:size(x1,1)
x=x1(ii,:);
end
ldata = [
1 2 0.0192 0.0575 0.0528 0 0 0 0 0 1 -360 360;
1 3 0.0452 0.1652 0.0408 0 0 0 0 0 1 -360 360;
2 4 0.057 0.1737 0.0368 0 0 0 0 0 1 -360 360;
3 4 0.0132 0.0379 0.0084 0 0 0 0 0 1 -360 360;
2 5 0.0472 0.1983 0.0418 0 0 0 0 0 1 -360 360;
2 6 0.0581 0.1763 0.0374 0 0 0 0 0 1 -360 360;
4 6 0.0119 0.0414 0.009 0 0 0 0 0 1 -360 360;
5 7 0.046 0.116 0.0204 0 0 0 0 0 1 -360 360;
6 7 0.0267 0.082 0.017 0 0 0 0 0 1 -360 360;
6 8 0.012 0.042 0.009 0 0 0 0 0 1 -360 360;
6 9 0 0.208 0 0 0 0 0.978 0 1 -360 360;
6 10 0 0.556 0 0 0 0 0.969 0 1 -360 360;
9 11 0 0.208 0 0 0 0 0 0 1 -360 360;
9 10 0 0.11 0 0 0 0 0 0 1 -360 360;
4 12 0 0.256 0 0 0 0 0.932 0 1 -360 360;
12 13 0 0.14 0 0 0 0 0 0 1 -360 360;
12 14 0.1231 0.2559 0 0 0 0 0 0 1 -360 360;
12 15 0.0662 0.1304 0 0 0 0 0 0 1 -360 360;
12 16 0.0945 0.1987 0 0 0 0 0 0 1 -360 360;
14 15 0.221 0.1997 0 0 0 0 0 0 1 -360 360;
16 17 0.0524 0.1923 0 0 0 0 0 0 1 -360 360;
15 18 0.1073 0.2185 0 0 0 0 0 0 1 -360 360;
18 19 0.0639 0.1292 0 0 0 0 0 0 1 -360 360;
19 20 0.034 0.068 0 0 0 0 0 0 1 -360 360;
10 20 0.0936 0.209 0 0 0 0 0 0 1 -360 360;
10 17 0.0324 0.0845 0 0 0 0 0 0 1 -360 360;
10 21 0.0348 0.0749 0 0 0 0 0 0 1 -360 360;
10 22 0.0727 0.1499 0 0 0 0 0 0 1 -360 360;
21 22 0.0116 0.0236 0 0 0 0 0 0 1 -360 360;
15 23 0.1 0.202 0 0 0 0 0 0 1 -360 360;
22 24 0.115 0.179 0 0 0 0 0 0 1 -360 360;
23 24 0.132 0.27 0 0 0 0 0 0 1 -360 360;
24 25 0.1885 0.3292 0 0 0 0 0 0 1 -360 360;
25 26 0.2544 0.38 0 0 0 0 0 0 1 -360 360;
25 27 0.1093 0.2087 0 0 0 0 0 0 1 -360 360;
28 27 0 0.396 0 0 0 0 0.968 0 1 -360 360;
27 29 0.2198 0.4153 0 0 0 0 0 0 1 -360 360;
27 30 0.3202 0.6027 0 0 0 0 0 0 1 -360 360;
29 30 0.2399 0.4533 0 0 0 0 0 0 1 -360 360;
8 28 0.0636 0.2 0.0428 0 0 0 0 0 1 -360 360;
6 28 0.0169 0.0599 0.013 0 0 0 0 0 1 -360 360;
];
A=[];
% Create Adjacency Matrix
for c1=1:size(ldata,1)
A(ldata(c1,1),ldata(c1,2))=1;
A(ldata(c1,2),ldata(c1,1))=1;
A(ldata(c1,2),ldata(c1,2))=1;
A(ldata(c1,1),ldata(c1,1))=1;
end
u=ones(nVar,1);
% x=round(x);
f=A*(x');
a=f.*u;
SORI = sum(a);
d=find(a==0);
if isempty(d)
Z=sum(x);
else
Z=numel(d)*nVar;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]余芳.应激状态监测中基于二进制粒子群优化和KNN模型的算法研究[D].东南大学,2012.DOI:10.7666/d.Y2246586.
[2]刘斌,黄纯,李波,等.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(2):6.DOI:10.3969/j.issn.1003-8930.2010.02.002.
[3]刘斌.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(002):000.