基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究是一项涉及电力系统中相位测量单元(PMU)部署的研究。PMU是一种用于实时监测电力系统状态的设备,可以提供高精度的电力数据,对于电力系统的运行和控制非常重要。在研究中,通过使用BPSO算法,结合电力系统的拓扑结构和负荷分布等信息,寻找最佳的PMU位置配置,以实现电力系统的最佳监测覆盖和控制。

BPSO算法是一种优化算法,灵感来自于粒子群优化(PSO)算法,但在BPSO中,解空间中的每个解都是由二进制编码表示的,因此适用于需要离散解空间的问题,如PMU位置配置问题。

在进行研究时,首先需要定义一个适当的目标函数,用于评估PMU位置配置的质量。目标函数通常会考虑到电力系统的覆盖率、可观测性、控制性能等方面。然后,使用BPSO算法来优化目标函数,寻找最佳的PMU位置配置方案。

研究中需要考虑的一些关键问题包括:
1. 如何定义目标函数,以平衡PMU的覆盖范围和可观测性?
2. 如何考虑电力系统的拓扑结构和负荷分布等信息?
3. 如何选择适当的BPSO参数,以确保算法的收敛性和性能?
4. 如何处理可能存在的约束条件,如PMU数量的限制或安装位置的限制?

通过对这些问题的深入研究和解决,可以为电力系统的监测与控制提供更有效的解决方案,提高电力系统的稳定性、可靠性和安全性。

📚2 运行结果

部分代码:

function  [Z, SORI]=IEEE_30_Bus(x1)
    Z = zeros(size(x1,1),1);
    nVar = size(x1,2);

    for ii = 1:size(x1,1)
        x=x1(ii,:);
    end

ldata = [
    1    2    0.0192    0.0575    0.0528    0    0    0    0    0    1    -360    360;
    1    3    0.0452    0.1652    0.0408    0    0    0    0    0    1    -360    360;
    2    4    0.057    0.1737    0.0368    0    0    0    0    0    1    -360    360;
    3    4    0.0132    0.0379    0.0084    0    0    0    0    0    1    -360    360;
    2    5    0.0472    0.1983    0.0418    0    0    0    0    0    1    -360    360;
    2    6    0.0581    0.1763    0.0374    0    0    0    0    0    1    -360    360;
    4    6    0.0119    0.0414    0.009    0    0    0    0    0    1    -360    360;
    5    7    0.046    0.116    0.0204    0    0    0    0    0    1    -360    360;
    6    7    0.0267    0.082    0.017    0    0    0    0    0    1    -360    360;
    6    8    0.012    0.042    0.009    0    0    0    0    0    1    -360    360;
    6    9    0    0.208    0    0    0    0    0.978    0    1    -360    360;
    6    10    0    0.556    0    0    0    0    0.969    0    1    -360    360;
    9    11    0    0.208    0    0    0    0    0    0    1    -360    360;
    9    10    0    0.11    0    0    0    0    0    0    1    -360    360;
    4    12    0    0.256    0    0    0    0    0.932    0    1    -360    360;
    12    13    0    0.14    0    0    0    0    0    0    1    -360    360;
    12    14    0.1231    0.2559    0    0    0    0    0    0    1    -360    360;
    12    15    0.0662    0.1304    0    0    0    0    0    0    1    -360    360;
    12    16    0.0945    0.1987    0    0    0    0    0    0    1    -360    360;
    14    15    0.221    0.1997    0    0    0    0    0    0    1    -360    360;
    16    17    0.0524    0.1923    0    0    0    0    0    0    1    -360    360;
    15    18    0.1073    0.2185    0    0    0    0    0    0    1    -360    360;
    18    19    0.0639    0.1292    0    0    0    0    0    0    1    -360    360;
    19    20    0.034    0.068    0    0    0    0    0    0    1    -360    360;
    10    20    0.0936    0.209    0    0    0    0    0    0    1    -360    360;
    10    17    0.0324    0.0845    0    0    0    0    0    0    1    -360    360;
    10    21    0.0348    0.0749    0    0    0    0    0    0    1    -360    360;
    10    22    0.0727    0.1499    0    0    0    0    0    0    1    -360    360;
    21    22    0.0116    0.0236    0    0    0    0    0    0    1    -360    360;
    15    23    0.1    0.202    0    0    0    0    0    0    1    -360    360;
    22    24    0.115    0.179    0    0    0    0    0    0    1    -360    360;
    23    24    0.132    0.27    0    0    0    0    0    0    1    -360    360;
    24    25    0.1885    0.3292    0    0    0    0    0    0    1    -360    360;
    25    26    0.2544    0.38    0    0    0    0    0    0    1    -360    360;
    25    27    0.1093    0.2087    0    0    0    0    0    0    1    -360    360;
    28    27    0    0.396    0    0    0    0    0.968    0    1    -360    360;
    27    29    0.2198    0.4153    0    0    0    0    0    0    1    -360    360;
    27    30    0.3202    0.6027    0    0    0    0    0    0    1    -360    360;
    29    30    0.2399    0.4533    0    0    0    0    0    0    1    -360    360;
    8    28    0.0636    0.2    0.0428    0    0    0    0    0    1    -360    360;
    6    28    0.0169    0.0599    0.013    0    0    0    0    0    1    -360    360;
];

    A=[];
    % Create Adjacency Matrix
    for c1=1:size(ldata,1)                  
        A(ldata(c1,1),ldata(c1,2))=1;  
        A(ldata(c1,2),ldata(c1,1))=1;
        A(ldata(c1,2),ldata(c1,2))=1;  
        A(ldata(c1,1),ldata(c1,1))=1; 
    end

    u=ones(nVar,1);
%     x=round(x);
    f=A*(x');
    a=f.*u;
    SORI = sum(a);
    d=find(a==0);
    if isempty(d) 
        Z=sum(x);
    else
        Z=numel(d)*nVar;  
    end
end
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]余芳.应激状态监测中基于二进制粒子群优化和KNN模型的算法研究[D].东南大学,2012.DOI:10.7666/d.Y2246586.

[2]刘斌,黄纯,李波,等.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(2):6.DOI:10.3969/j.issn.1003-8930.2010.02.002.

[3]刘斌.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(002):000.

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值