💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
一阶多智体系统一致性研究概述
连续时间含时延系统一致性
一阶时滞多智能体系统的一致性研究主要集中在如何提高系统的时滞鲁棒性及一致性收敛速度。通过引入加权平均预测机制到传统一致性协议中,可以有效解决传统协议不能同时满足较高时滞鲁棒性及一致性收敛速度的问题。这一改进不仅保证了系统的收敛条件,还证明了适当长度的加权平均预测可以提高系统的时滞鲁棒性,加快一致的收敛速度。
仿真实验验证
为了进一步验证理论结果的有效性,研究者通常会进行仿真实验。这些实验可以帮助理解系统在不同参数设置下的动态行为,以及所提出的控制策略在实际应用中的表现。
DGD仿真
DGD(Distributed Gradient Descent)仿真是一种用于多智能体系统一致性研究的数值方法。通过模拟智能体之间的交互和通信过程,DGD仿真能够帮助研究者分析和优化一致性协议的性能。具体来说,DGD仿真可以用于验证不同一致性算法在不同网络拓扑和通信时延条件下的有效性。
应用场景
DGD仿真广泛应用于多种场景,包括但不限于无人机编队控制、环境监测和车辆控制等领域。在这些应用中,智能体之间的协作和协调至关重要,而一致性算法是实现这一目标的关键技术。
切换拓扑系统一致性
在切换拓扑的多智能体系统中,系统的一致性受到拓扑结构变化的影响。为了解决这一问题,研究者设计了专门的一致性控制算法,通过将一阶、二阶系统重排和模型变换,使原系统分解成多个简单子系统。利用李雅普洛夫稳定理论,可以证明这种分解方法能够有效提高系统的指数一致性。
切换拓扑的影响
切换拓扑的存在使得系统的通信路径和交互关系不断变化,这给一致性算法的设计和分析带来了额外的挑战。然而,通过适当的设计和调整,可以有效地克服这些挑战,实现系统的一致性。
离散时间系统一致性
离散时间系统一致性研究主要关注在离散时间域下,多智能体系统如何达到一致状态。在这一领域,研究者提出了多种一致性控制协议,并结合李雅普诺夫稳定性理论和不等式分析,给出了系统实现一致性的充分条件和收敛时间上界。
事件触发机制的应用
为了减少控制过程中的能量损耗,一些研究采用了基于事件触发的控制协议。这种机制可以根据系统的实时状态和通信需求,灵活地调度和控制智能体的行为,从而提高系统的整体效率。
连续时间系统一致性
连续时间系统一致性研究主要集中在如何设计有效的控制策略,使得多智能体系统在连续时间域下能够达到一致状态。通过深入分析系统的动态行为和通信机制,研究者提出了多种一致性算法,并通过仿真实验验证了这些算法的有效性。
领航者多智能体系统一致性
在带有领航者的多智能体系统中,领航者的存在对整个系统的性能有着重要影响。研究者设计了专门的一致性控制协议,通过考虑领航者的引导和智能体之间的交互,实现了系统的高效协作和控制。
编队多智能体系统一致性
编队多智能体系统一致性研究主要关注如何通过协同控制,使得多个智能体能够形成特定的队形或结构。在这一领域,研究者提出了多种编队控制算法,并通过仿真实验验证了这些算法的有效性。
综上所述,一阶多智体系统一致性研究涵盖了连续时间含时延系统一致性、DGD仿真、切换拓扑系统一致性、离散时间系统一致性和连续时间系统一致性等多个方面。通过深入分析和设计有效的一致性控制算法,可以有效提高多智能体系统的协作性能和整体效率。
📚2 运行结果
2.1 连续时间含时延系统一致性
2.2 DGD仿真
2.3 切换拓扑系统一致性
2.4 离散时间系统一致性
2.5 连续时间系统一致性
部分代码:
% 梯度下降部分
diminish_step_size = -0.0045/1000*iteration + 0.005;
node_params(node) = node_params(node) - fixed_step_size * local_gradients;
end
% 存储参数历史
param_history(iteration, :) = node_params;
% 记录收敛所需迭代次数
for node = 2:num_nodes
difference = difference + abs(node_params(1)-node_params(node));
end
if iteration_converge == 0 && difference < 0.001
iteration_converge = iteration;
end
difference = 0;
end
% 输出最终的全局最优解
global_minimizer = node_params;
global_minimum = global_objective(global_minimizer);
fprintf('全局最优解:\n');
fprintf('%2f\n', global_minimizer);
fprintf('全局最小值:%f\n', global_minimum);
fprintf('收敛的迭代次数:%d\n', iteration_converge);
figure;
hold on;
for node = 1:num_nodes
plot(1:num_iterations, param_history(:, node), 'LineWidth', 2, 'DisplayName', sprintf('节点 %d', node));
end
xlabel('迭代次数');
ylabel('节点参数');
title('节点参数随时间的变化');
legend('Location', 'Best');
grid on;
hold off;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]王珊.具有脉冲和时滞影响的多智体系统的二阶一致性研究[D].河北师范大学,2014.
[2]刘梦舒,柯彦冰,王爱民,等.针对多重故障多智能体系统的容错控制方法[J].杭州电子科技大学学报, 2022(002):042.
[3]仇智慧.基于非完整约束动力学模型多个体系统的有限时间一致性问题研究[D].天津大学,2014.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取