【电动车】【超级棒】基于蒙特卡洛模拟法的电动汽车充电负荷研究(Matlab代码实现)

👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

基于蒙特卡洛模拟法的电动汽车充电负荷研究

一、引言

二、蒙特卡洛模拟法简介

三、电动汽车充电负荷影响因素分析

四、蒙特卡洛模拟法在电动汽车充电负荷预测中的应用

五、实例分析

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

电动汽车充电负荷在时间及空间上均具有不确定性,随着电动汽车普及程度的不断提高,电动汽车充电行为将给电力系统安全性、经济性带来挑战「1。电动汽车对电力系统的影响主要通过充电负荷实现,且电动汽车充电负荷特性较为复杂,预测难度较大。周念成等对不同类型电动汽车充电特性进行了分析,并在此基础上引入影响电动汽车实时充电数量的随机因素,建立了不同类型电动汽车充电负荷的概率模型。仿真结果表明,工作日充电高峰时段的负荷高于节假日充电高峰时段的负荷[2。李亚芬等分析了传统出租车的运营模式和行驶规律,考虑了换班、用餐、夜间运行等情况对出租车起始充电时刻和日行驶里程的影响,建立了电动出租车充电负荷分段概率模型3。杨少兵等提出了2种电动汽车充电站的负荷建模方式,分别为快速计算法和考虑多种因素的动态过程仿真法,以北京奥运电动公交充电站为仿真对象验证了这2种方法的有效性,比较后发现动态过程仿真法具有更快的运算速度、更高的准确性[4]。张洪财等指出电动汽车的停车特性受汽车类型、停车地点、停车时间等多种因素的影响,建立了计及电动汽车停车需求时空分布的充电负荷模型「5]。温剑锋等利用马尔科夫链描述电动汽车用户出行的多个特征参数,据此建立的电动汽车充电负荷模型不仅可以较为准确地模拟用户出行规律,还可以反应电动汽车充电的时空分布特性[6]。

伴随环境问题的影响,以及电动汽车技术的不断成熟,电动汽车对电网影响不断增加。电动汽车在充放电过程中不但可能导致局部过负荷问题,而且在此过程中产生的谐波污染会影响电网电能的质量,因此及时准确地把握电动汽车的负荷需求对电力系统运行和规划具有重要的意义。

电动汽车充电负荷预测的重点研究对象是预测技术的选择,如今有单耗法、灰色模型、时间序列、专家系统等方法,包括优化组合分析的电力系统负荷预测法等。电动汽车的位置不明确,且充电时间受到随机性的影响等,都会造成电动汽车充、换电站的负荷产生一定的时变性,运用之前的传统方法,无法预测或是表达其复杂的非线性特点。所以考虑运用先进的蒙特卡洛 模拟法,对数据进行挖掘、处理、分析,对不确定的因素进行处理,总结出相应的分布规律,并提出相应的、科

学合理的预测法。

计算电动汽车充电负荷的困难之处在于起始充电时间和起始SOC 的随机性。假设电网对于 电 动 汽 车的充电行为无法起到决定的作用,当接入到电网之后就开始进行充电,抽取每一辆汽车起始充电时间、起始SOC。起始充电时间根据不同车型有所差别,起 始SOC则符合正 态 分 布。在确定不同车型充电负荷模型及其参数后,需要对快速充电和常规充电分别建模,流程如图1所示。

基于蒙特卡洛模拟法的电动汽车充电负荷研究

一、引言

随着电动汽车的普及和规模化发展,其充电负荷对电网的影响日益显著。为了准确预测电动汽车的充电负荷,本文采用蒙特卡洛模拟法进行研究。蒙特卡洛模拟法是一种基于概率统计理论的随机抽样技术,在各个领域得到了广泛应用。本文将该方法应用于电动汽车充电负荷的预测中,以期为电动汽车充电设施规划和电网调度提供参考。

二、蒙特卡洛模拟法简介

蒙特卡洛模拟法是一种通过随机抽样来近似求解数学问题或物理问题的方法。它利用随机数来模拟各种可能的情况,并通过对这些情况的统计来得到问题的解。在电动汽车充电负荷预测中,蒙特卡洛模拟法可以模拟电动汽车的充电行为,包括充电时间、充电功率、充电起始电量等随机因素,从而得到充电负荷的预测结果。

三、电动汽车充电负荷影响因素分析

电动汽车充电负荷的影响因素众多,主要包括电动汽车的保有量、类型、动力电池类型、电能补给模式、充电特性、充电起始时间、日行驶里程数、动力电池荷电状态(SOC)以及充电功率等。这些因素之间相互作用,共同影响电动汽车的充电负荷。

  1. 电动汽车保有量:电动汽车的保有量是影响充电负荷的基础因素。随着电动汽车的普及,其保有量将不断增加,从而导致充电负荷的增加。
  2. 电动汽车类型:不同类型的电动汽车具有不同的充电需求和充电特性。例如,电动公交车通常进行常规充电,而电动出租车则可能更倾向于快速充电。
  3. 动力电池类型:动力电池的类型和性能对电动汽车的充电负荷也有显著影响。不同类型的动力电池具有不同的充电效率和充电特性。
  4. 电能补给模式:电能补给模式包括地面充电和整车充电两种。不同的补给模式对充电负荷的分布和峰值有不同的影响。
  5. 充电特性:电动汽车的充电特性包括充电速率、充电效率等,这些特性直接影响充电负荷的大小和分布。
  6. 充电起始时间和日行驶里程数:充电起始时间和日行驶里程数是影响电动汽车充电负荷的重要因素。它们决定了电动汽车何时需要充电以及充电的电量大小。
  7. 动力电池荷电状态(SOC):SOC表示动力电池的剩余电量与总容量的比值。它是决定电动汽车是否需要充电以及充电多少的关键因素。
  8. 充电功率:充电功率的大小直接影响电动汽车的充电速度和充电负荷的大小。
四、蒙特卡洛模拟法在电动汽车充电负荷预测中的应用
  1. 模型建立

    • 首先,根据电动汽车的保有量、类型、动力电池类型等因素,建立电动汽车充电负荷预测模型。
    • 然后,根据历史数据和专家经验,设定各影响因素的分布函数和参数。
  2. 随机抽样

    • 利用蒙特卡洛模拟法,对各影响因素进行随机抽样,生成大量的电动汽车充电行为样本。
    • 每个样本包括电动汽车的充电时间、充电功率、充电起始电量等信息。
  3. 负荷计算

    • 根据生成的充电行为样本,计算每个样本的充电负荷。
    • 然后,将所有样本的充电负荷进行叠加,得到总的充电负荷预测结果。
  4. 结果分析

    • 对预测结果进行分析,包括充电负荷的分布、峰值、谷值等特征。
    • 根据分析结果,对电动汽车充电设施规划和电网调度提出建议。
五、实例分析

以某城市为例,采用蒙特卡洛模拟法对其电动汽车充电负荷进行预测。首先,根据该城市的电动汽车保有量、类型、动力电池类型等因素,建立充电负荷预测模型。然后,利用蒙特卡洛模拟法生成大量的充电行为样本,并计算每个样本的充电负荷。最后,将所有样本的充电负荷进行叠加,得到该城市的总充电负荷预测结果。结果表明,该城市的电动汽车充电负荷将在未来几年内呈现快速增长的趋势,且在某些时段会出现明显的峰值。因此,需要加强对电动汽车充电设施的建设和电网调度的优化,以应对电动汽车充电负荷的增长。

六、结论与展望

本文采用蒙特卡洛模拟法对电动汽车充电负荷进行了研究,建立了基于蒙特卡洛模拟法的电动汽车充电负荷预测模型。通过实例分析,验证了该方法的有效性和准确性。未来,随着电动汽车技术的不断发展和充电设施的日益完善,电动汽车充电负荷的预测将更加精确和可靠。同时,也需要加强对电动汽车充电行为的研究和数据分析,以进一步提高充电负荷预测的准确性和实用性。

📚2 运行结果

 

 

 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]庞培川,曾成,杨彪,张谦.蒙特卡洛模拟法计算电动汽车充电负荷[J].通信电源技术,2016,33(01):155-158.DOI:10.19399/j.cnki.tpt.2016.01.060.

[2]蒋林洳,万伟江,丁霄寅,李涛永,张元星,张晶.一种基于直接蒙特卡洛法的电动汽车充电负荷模型[J].供用电,2018,35(04):20-25+13.

[3]雷金勇,段卫国,董旭柱等. 充电模式下基于蒙特卡洛模拟的深圳市电动汽车负荷计算[C]//中国科学技术协会,河北省人民政府.第十四届中国科协年会第19分会场:电动汽车充放电技术研讨会论文集.[出版者不详],2012:88-93.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值