👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
a
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
参考文献:
风力发电厂在运行期间几乎没有边际成本。然而,当试图满足合同规定的电力输送量时,风的变化和不确定性会导致重大问题。因此,风力发电厂和其他不可调度电源与可调度电源组合,形成虚拟发电厂。本文研究了由间歇式可再生能源、存储系统和常规发电厂组成的虚拟发电厂的每周自调度问题。一方面,虚拟电厂需要履行其长期双边合同,而另一方面,它在市场上努力实现其整体利润的最大化。最优调度问题被表述为一个混合整数线性规划模型,该模型在长期双边合同和技术约束下使每周虚拟电厂利润最大化。自调度过程基于随机规划。风力发电和太阳能发电的不确定性是通过使用抽水蓄能来解决的,以便提供灵活的运行,同时也通过使用常规发电厂作为备用。通过一个实际的案例研究,给出了所提出模型的效率,并对结果进行了分析。此外,还分析了抽水蓄能的不同库容和涡轮/泵容量的影响。
由于人们对传统化石燃料发电厂的环境影响日益担忧,在过去的几十年中,可再生能源(RES)一直在经历着显著的增长。由于可再生能源还不能像化石燃料那样提供投资回报水平[1],因此已出台了各种可再生能源激励计划。其中包括上网电价方案、上网电价方案和配额方案。由于这些重大激励措施,风力发电和光伏发电已成为最具推进力的可再生能源技术。2010年,全球风力发电容量达到196 GW,年增长率为24%[2],而同年的光伏装机容量达到40 GW,年增速超过60%[3]。
主要原因是RES预测电力输出的不确定性。例如,由于风的随机性,风力发电厂(WPP)本质上是间歇性的,光伏发电厂的输出取决于太阳辐射和云层[4]。因此,无法满足长期和中期电力交付合同的风险是内在的。为了分散这种风险,将不同类型的可再生和不可再生发电机和存储设备组合成一个虚拟电厂(VPP)。VPP使相关的可再生能源能够作为具有规定小时输出的单个发电厂参与电力市场[5]。虚拟电厂,有时称为虚拟公用事业[6],包含不同发电机的混合物。精心选择的发电技术组合可以抵消可再生能源发电机组固有的不可靠性,从而建立一个可视为常规发电机组的VPP[7]。从任何其他市场代理的角度来看,VPP是一个独特的实体,尽管实际上它代表了多个分布式能源(DER)和传统发电厂的混合[8]。
本文主要做的是一个虚拟电厂或者微网单元的日前优化调度模型,考虑了光伏出力和负荷功率的双重不确定性,采用随机规划法处理不确定性变量,构建了虚拟电厂随机优化调度模型。具体来看,首先是基于蒙特卡洛算法,对预测的光伏以及负荷曲线进行场景生成,然后基于快概率距离快速消除法进行削减,直至削减至5个场景,然后采用随机调度的方法,对多场景下的虚拟电厂调度策略进行优化。
多阶段随机优化模型通常设定日前阶段的光伏出力场景只有一个为日前预测值,日内和实时阶段
的光伏出力场景采用蒙特卡罗抽样和场景削减(同步回代削减技术)的方法获得,若日内光伏出力场景数量为 N1 ,实时光伏出力场景数量为 N2 ,则经过排列组合,多阶段随机优化模型的随机场景总数量 一共为 N1 ×N2 ,可形成如图 1 所示的场景树.
多阶段随机优化模型中含有非预期约束条件,决策变量可随着未来不确定因素的确定化过程不断
调节,根据观察到的实时信息进行调整,但是当前决策只取决于当前所观察到的光伏出力场景,即当前阶段同一光伏出力场景下的决策需保持一致性[21],如图 2 所示。
风光场景削减及源荷不确定性的虚拟电厂随机优化调度研究
一、虚拟电厂(VPP)的核心概念与功能
虚拟电厂(Virtual Power Plant, VPP)是一种通过数字化技术聚合分布式能源资源(DERs)的能源管理系统,其核心在于将分散的风光发电、储能系统、可控负荷等资源整合为统一的可调度单元。VPP不依赖物理发电机组,而是通过能量管理系统(EMS)实现资源优化调度,参与电力市场交易并提供辅助服务。其功能包括:
- 资源聚合与协调:整合屋顶光伏、储能电池、电动汽车等分布式资源,形成可调节的“虚拟机组”。
- 电网交互能力:模拟传统电厂的外特性(如调峰、调频),响应电网调度指令。
- 经济性优化:在保证系统安全的前提下,最小化运行成本或最大化利润,同时支持碳减排目标。
二、风光场景削减技术
风光发电的随机性和间歇性导致大量场景需求,直接优化计算复杂度高。场景削减技术通过保留代表性场景降低计算负担,主要方法包括:
- 聚类算法:
- K-means聚类:将初始场景按欧式距离分类,选择聚类中心作为典型场景。
- K-means++改进:优化初始聚类中心选择,提升场景覆盖范围。
- 概率距离法:
- 快速前代技术:计算场景间欧式距离,合并相似场景并累加概率,迭代缩减至目标数量。
- Wasserstein距离:衡量概率分布差异,用于构建模糊集以覆盖不确定性。
- 蒙特卡洛削减法:
- 基于重要性抽样,保留高权重场景,适用于服从特定分布(如正态、Beta分布)的风光出力建模。
- 混合方法:
- LHS+K-means:拉丁超立方抽样(LHS)生成初始场景,再通过聚类削减冗余。
技术对比:
方法 | 优点 | 缺点 |
---|---|---|
K-means聚类 | 计算效率高,易于实现 | 对初始中心敏感,可能遗漏边缘场景 |
概率距离法 | 保留概率分布特性,精度较高 | 计算复杂度随场景数增加而升高 |
蒙特卡洛削减法 | 适合复杂分布,鲁棒性强 | 需要大量初始样本,耗时较长 |
三、源荷不确定性建模方法
源(风光)与荷(负荷)的不确定性来源及建模策略:
- 不确定性来源:
- 源侧:风速/辐照度波动导致预测误差(风电误差可达30%以上)。
- 荷侧:负荷需求受天气、用户行为等因素影响,呈现日内峰谷波动。
- 建模方法:
- 随机优化(SO):
- 基于概率分布生成多场景(如蒙特卡洛模拟),优化目标期望值。
- 局限性:依赖准确概率分布假设,场景数量过多时计算负担大。
- 鲁棒优化(RO):
- 构建模糊集描述最恶劣场景,确保调度方案在所有可能情况下可行。
- 局限性:结果可能过于保守,牺牲经济性。
- 分布鲁棒优化(DRO):
- 结合SO与RO,构建以历史数据为中心的概率分布模糊集(如Wasserstein球域),平衡鲁棒性与经济性。
- 数据驱动方法:
- 利用LSTM-CGAN生成风光出力序列,结合聚类算法提取典型场景。
典型流程:
- 使用LHS或蒙特卡洛生成初始场景。
- 通过K-means聚类或快速前代法削减场景。
- 计算各场景概率,叠加至调度模型中。
四、虚拟电厂随机优化调度模型与算法
- 模型构建:
- 目标函数:最小化运行成本(发电成本、弃风弃光惩罚、购电成本)或最大化利润(参与电-碳-绿证市场)。
- 约束条件:包括功率平衡、储能充放电限制、设备运行区间等。
- 求解算法:
- 两阶段随机规划:
- 第一阶段制定日前计划,第二阶段根据实时数据调整。
- 机会约束规划:
- 允许约束以一定置信水平满足,例如95%概率下不越限。
- 智能优化算法:
- 改进粒子群算法(调整惯性权重、学习因子)提升全局搜索能力。
- 深度确定性策略梯度(DDPG)处理EV与新能源的协调问题。
- 混合整数线性规划(MILP):
- 适用于含离散变量(如机组启停)的调度问题。
应用案例:
- 风光水VPP协调调度:通过概率距离法将50个光伏场景削减至5个,优化水电与风光互补。
- 多市场参与:在电-碳-绿证市场中,利用CVaR量化风光波动风险,设置偏差容忍度以平衡收益与风险。
五、挑战与未来方向
- 现有挑战:
- 计算复杂度:大规模场景削减与多时间尺度优化导致求解时间过长。
- 模型保守性:鲁棒优化可能过度保守,而随机优化依赖精确概率分布。
- 多资源协调:EV、需求响应等灵活性资源的时空特性增加调度维度。
- 未来研究方向:
- 数据驱动与AI融合:利用生成对抗网络(GAN)提升场景生成效率,结合强化学习实现自适应调度。
- 多时间尺度优化:滚动时域优化与反馈校正结合,提升实时调度精度。
- 市场机制设计:探索VPP在辅助服务市场、容量市场中的博弈策略。
- 碳约束集成:将碳成本纳入目标函数,推动低碳调度。
六、结论
虚拟电厂的随机优化调度是应对高比例可再生能源接入的关键技术。通过风光场景削减降低计算复杂度,结合源荷不确定性建模(如DRO、LHS聚类)和智能算法(改进粒子群、DDPG),可实现经济性与可靠性的平衡。未来需进一步突破多资源协同、数据驱动建模及市场机制创新,以支撑新型电力系统的高效运行。
📚2 运行结果
负荷削减:
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]裴蕾,卫志农,陈胜等.交直流混合配电网多阶段随机优化调度模型[J].电力系统保护与控制,2022,50(14):23-32.DOI:10.19783/j.cnki.pspc.211212.
[2] Pandzic H , Kuzle I , Capuder T . Virtual power plant mid-term dispatch optimization[J]. Applied Energy, 2013, 101(JAN.):134-141.