经过一个小假期(采集圣弥厄尔教堂3D数据)后,时间来到了引航计划第六天,今天的主要任务是决策层及连调实验的环境搭建环节。
目录
一、本地Anaconda安装及环境的创建
Anaconda是什么?Pytorch是什么?
Anaconda是什么?
Anaconda是一个安装、管理python相关包的软件,还自带python、Jupyter Notebook、Spyder,有管理包的conda工具。Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。
总的来说,笔者认为可以将Anaconda看作一个菜市场,我们可以在Anaconda中进行各种数据处理、数据管理、环境搭建、环境管理等。笔者也是选择在Anaconda中搭建虚拟环境。
Pytorch是什么?
Pytorch是torch库的python版本,是由Facebook开源的神经网络框架,与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。我们需要下载在Python环境中下载Pytorch库这样就在环境中建立了Pytorch的神经网络。
安装步骤及遇见的问题与解决
1.Anaconda的安装
Anaconda的小白级保姆级安装教程网上已经比比皆是了,在此不作详述,只作简单梳理(引航计划老师提供安装包。)。
官网下载
- Anaconda官网https://www.anaconda.com/distribution/下载.exe文件
- 双击exe文件安装(注意事项:1、自定义安装路径,尽量不要选C盘。2、一定要记住步骤1里面的路径,省的以后找不到。3、要勾选“Add anaconda to PATH”添加到环境变量,避免麻烦。)
清华源下载
根据个人情况,官网下载太慢的话推荐清华源下载链接,方法见笔者另一篇博文。
注意事项:注意看Anaconda的版本!!!一个是前面的Anaconda2/3,另一个是后面的版本号。不同的版本号基于的Python环境是不一样的,后期降级很麻烦,所以建议不要下载太新的版本,根据Python的需要下载安装。笔者下载的是5.3.0版本,对应的是Python 3.7。
环境的创建与配置
在Anaconda Navigation中配置虚拟环境
详见笔者另一篇博文
在Anaconda Prompt中配置虚拟环境
打开Aanconda Prompt,输入如下代码搭建环境(搭建名字叫torch_1_12,基于python 3.7):
conda create -n torch_1_12 python=3.7
中间会出现([y]/[n]?)键入y等待安装完毕即可。
在虚拟环境中配置pytorch
1.配置完虚拟环境后,在Anaconda Prompt中输入如下代码进入虚拟环境:
activate torch_1_12
2.进入pytorch官方网站:Pytorch官网
按如下选择(不用GPU)复制代码进入虚拟环境:
pip3 install torch torchvision torchaudio
等待安装成功即可。
配置Opencv
输入代码
pip install opencv-python==3.4.2.17 tqdm wandb
等待安装成功即可
检测安装是否成功
虚拟环境:
- 在Anaconda Prompt命令行输入active torch_1_12(你定义的虚拟环境名称)
- 左边括号从(base)变成(虚拟环境名),即配置成功。
Pytorch:
- 进入pytorch环境中后输入python进入python环境(可以看到python版本,笔者是3.6.13)
- 输入import torch
- 打印pytorch版本:
print(torch.__version__)
没有报错即为安装成功,并且会打印pytorch版本。
二、VScode的准备
- 下载VScode(引航计划提供exe文件)
- “拓展”下载Markdown Preview Enhanced插件
- “设置”搜索python将虚拟环境的python.exe路径写入Python: Default Interpreter Path中:
准备就绪。
三、训练模型
- 用Anaconda Prompt激活torch_1_12虚拟环境
- 输入如下代码进入程序文件夹:
cd /d D:\Ayinhang\1_segmentation\unet_torch
- 输入如下代码运行train.py文件
python train.py -b 1 -e 3 -l 0.005 -s 1 -c 3
注意:-b:Batch size -e: Epoch -l: Learning Rate -s: Scale -c: Classes
-
等待程序跑完
-
得到权重文件
四、预测模型
根据自己文件位置运行predict.py文件:
注意: -m: model FILE -i: INPUT -v: Visualize -n: not saved
得到结果如下:
以演示为目的,跑的轮数太少故效果不理想,该项目告一段落。