引航计划Day6

经过一个小假期(采集圣弥厄尔教堂3D数据)后,时间来到了引航计划第六天,今天的主要任务是决策层及连调实验的环境搭建环节。

目录

一、本地Anaconda安装及环境的创建

Anaconda是什么?Pytorch是什么?

安装步骤及遇见的问题与解决

官网下载

清华源下载

环境的创建与配置

在Anaconda Navigation中配置虚拟环境

在Anaconda Prompt中配置虚拟环境

在虚拟环境中配置pytorch

配置Opencv

检测安装是否成功

二、VScode的准备

三、训练模型

四、预测模型

五、中科曙光环境搭建及模型实验


一、本地Anaconda安装及环境的创建

Anaconda是什么?Pytorch是什么?

Anaconda是什么?
Anaconda是一个安装、管理python相关包的软件,还自带python、Jupyter Notebook、Spyder,有管理包的conda工具。Anaconda包含了conda、Python在内的超过180个科学包及其依赖项。

总的来说,笔者认为可以将Anaconda看作一个菜市场,我们可以在Anaconda中进行各种数据处理、数据管理、环境搭建、环境管理等。笔者也是选择在Anaconda中搭建虚拟环境。

Pytorch是什么?
Pytorch是torch库的python版本,是由Facebook开源的神经网络框架,与Tensorflow的静态计算图不同,pytorch的计算图是动态的,可以根据计算需要实时改变计算图。我们需要下载在Python环境中下载Pytorch库这样就在环境中建立了Pytorch的神经网络。

安装步骤及遇见的问题与解决

1.Anaconda的安装
     Anaconda的小白级保姆级安装教程网上已经比比皆是了,在此不作详述,只作简单梳理(引航计划老师提供安装包。)。

官网下载

  1. Anaconda官网https://www.anaconda.com/distribution/下载.exe文件
  2. 双击exe文件安装(注意事项:1、自定义安装路径,尽量不要选C盘。2、一定要记住步骤1里面的路径,省的以后找不到。3、要勾选“Add anaconda to PATH”添加到环境变量,避免麻烦。)

清华源下载

根据个人情况,官网下载太慢的话推荐清华源下载链接,方法见笔者另一篇博文。

注意事项:注意看Anaconda的版本!!!一个是前面的Anaconda2/3,另一个是后面的版本号。不同的版本号基于的Python环境是不一样的,后期降级很麻烦,所以建议不要下载太新的版本,根据Python的需要下载安装。笔者下载的是5.3.0版本,对应的是Python 3.7。

环境的创建与配置

在Anaconda Navigation中配置虚拟环境

详见笔者另一篇博文

在Anaconda Prompt中配置虚拟环境

打开Aanconda Prompt,输入如下代码搭建环境(搭建名字叫torch_1_12,基于python 3.7):

conda create -n torch_1_12 python=3.7


 中间会出现([y]/[n]?)键入y等待安装完毕即可。

在虚拟环境中配置pytorch

1.配置完虚拟环境后,在Anaconda Prompt中输入如下代码进入虚拟环境:

activate torch_1_12

2.进入pytorch官方网站:Pytorch官网

按如下选择(不用GPU)复制代码进入虚拟环境:


 

pip3 install torch torchvision torchaudio

 等待安装成功即可。

配置Opencv

输入代码

pip install opencv-python==3.4.2.17 tqdm wandb

等待安装成功即可

检测安装是否成功

虚拟环境:

  1. 在Anaconda Prompt命令行输入active torch_1_12(你定义的虚拟环境名称)
  2. 左边括号从(base)变成(虚拟环境名),即配置成功。

Pytorch:

  1. 进入pytorch环境中后输入python进入python环境(可以看到python版本,笔者是3.6.13)
  2. 输入import torch
  3. 打印pytorch版本:
print(torch.__version__)

没有报错即为安装成功,并且会打印pytorch版本。

二、VScode的准备

  1. 下载VScode(引航计划提供exe文件)
  2. “拓展”下载Markdown Preview Enhanced插件
  3. “设置”搜索python将虚拟环境的python.exe路径写入Python: Default Interpreter Path中:

 准备就绪。

三、训练模型

  1. 用Anaconda Prompt激活torch_1_12虚拟环境
  2. 输入如下代码进入程序文件夹:
    cd /d D:\Ayinhang\1_segmentation\unet_torch
    
  3. 输入如下代码运行train.py文件
    python train.py -b 1 -e 3 -l 0.005 -s 1 -c 3

    注意:-b:Batch size -e: Epoch -l: Learning Rate -s: Scale -c: Classes

  4. 等待程序跑完

  5. 得到权重文件

四、预测模型

根据自己文件位置运行predict.py文件:

注意: -m: model FILE -i: INPUT -v: Visualize -n: not saved

得到结果如下:

以演示为目的,跑的轮数太少故效果不理想,该项目告一段落。

五、中科曙光环境搭建及模型实验

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值