用户如何使用 MCP(Model Context Protocol)
本文将为你详细介绍如何通过 模型上下文协议(Model Context Protocol,简称 MCP) 快速实现语言模型与外部工具或资源的连接。
📌 什么是 MCP?
MCP(Model Context Protocol)是由 Anthropic 公司提出的一项开源标准协议,旨在实现大型语言模型(如Claude、GPT)与外部数据源或工具之间标准化、高效、安全地连接,进一步拓展语言模型的使用场景。
简单来说,使用 MCP 后,语言模型将不再局限于自身的训练数据,而是可以实时访问外部工具或资源来满足更复杂的交互需求。
🖥️ MCP的架构图示:
以下图示展示了 MCP 的核心流程和架构,帮助你快速理解 MCP 工作原理。
架构的核心组件:
- LLM应用(如Claude、GPT):提出请求的主体。
- MCP客户端:向服务器转发请求并返回数据。
- MCP服务器:连接外部工具或资源,处理请求。
🚀 用户如何使用 MCP(详细步骤):
接下来,以一个实际的简单示例教你快速上手 MCP:
1. 环境准备(安装依赖)
在命令行中运行如下指令:
pip install jsonrpcserver jsonrpcclient requests
2. 创建 MCP 服务器端(mcp_server.py
)
服务器端提供数据或工具服务。
from jsonrpcserver import method, serve
# 创建服务器资源方法
@method
def query_resource(resource_name):
resources = {
"book_info": {"title": "深入理解人工智能", "author": "李明", "year": 2023},
"user_profile": {"username": "Alice", "email": "alice@example.com"},
}
return resources.get(resource_name, "未找到资源")
if __name__ == "__main__":
print("MCP服务器启动:http://localhost:5000")
serve(port=5000)
3. 创建 MCP 客户端(mcp_client.py
)
客户端调用服务器接口,并与语言模型配合工作:
from jsonrpcclient import request
import requests
def mcp_get(resource_name):
response = requests.post(
"http://localhost:5000/",
json=request("query_resource", resource_name)
).json()
if "result" in response:
return response["result"]
else:
return f"错误:{response['error']}"
if __name__ == "__main__":
# 请求资源
print("请求书籍信息:", mcp_get("book_info"))
print("请求用户信息:", mcp_get("user_profile"))
print("请求不存在资源:", mcp_get("unknown"))
4. 运行示例
首先启动服务器端:
python mcp_server.py
然后打开另一个终端,运行客户端:
python mcp_client.py
运行后你将看到:
请求书籍信息: {'title': '深入理解人工智能', 'author': '李明', 'year': 2023}
请求用户信息: {'username': 'Alice', 'email': 'alice@example.com'}
请求不存在资源: 未找到资源
🌟 MCP能带来哪些价值?
-
实时获取最新数据
语言模型可实时访问外部数据,无需重新训练模型。 -
灵活调用外部工具
可集成各种外部工具,扩展AI的应用场景。 -
提升 AI 的实用性
让语言模型真正走进实际的生产环境。
🚧 常见问题 FAQ:
Q1:MCP 适合哪些语言模型?
适合主流语言模型,包括 GPT 系列、Claude 系列等。
Q2:MCP 协议的通信方式有哪些?
支持本地通信(标准输入输出)、远程通信(HTTP服务器发送事件,SSE)两种模式。
Q3:实现 MCP 协议需要哪些基础?
了解基本的 JSON-RPC 协议即可轻松实现。
📚 参考资料:
🎯 总结:
MCP 为语言模型与外部资源的高效沟通提供了一套标准的解决方案,有了 MCP,AI 助手、知识管理系统、智能内容创作工具的实现将变得更加便捷。
赶快亲自尝试一下吧!
注意:
以上代码、图片等资源仅作教学使用,如有进一步需求可自行拓展。
🎉 现在开始你的 MCP 实践之旅吧!