推理时间(FPS)的定义及实战

写在前面

在目标检测领域,尤其是打算做深度学习算法优化和工程部署的同学,在初步入门yolo跑通以后,除了最直观的在run和detect文件夹看可视化结果,神经网络的计算量(FLOPs)、参数量(Params)、推理时间(FPS)这些指标也需要考虑,因为很多嵌入式的部署的硬件平台是不如GPU算力充足的,计算量(FLOPs)和参数量(Params)是train.py运行时yolo自带可以显示的,本篇文章详细写一下推理时间(FPS)的定义和实战方法。

FPS定义

FPS(Frames Per Second):每秒传输帧数,网络每秒可以处理(检测)多少帧(多少张图片),即每秒内可以处理的图片数量或者处理一张图片所需时间来评估检测速度,时间越短,速度越快。

fps的计算公式如下:

  1. 计算 YOLOv5 的推理时间:运行 YOLOv5 模型处理一张图像所需的时间。
  2. 计算帧速率:使用推理时间除以每张图像的处理时间,即 1 ÷ 推理时间(s)或1000 ÷推理时间(ms) 。
  3. 计算 FPS:将帧速率四舍五入为最接近的整数,这就是 YOLOv5 的 FPS。

FPS简单来理解就是图像的刷新频率,假设目标网络处理1帧要0.01s,此时FPS就是1/0.01=100。
这里大家也常常用时间单位ms进行推理时间的约束,比如某项目要求目标检测要在40ms内完成单帧图像的检测,换算过来也就是25fps。

FPS计算实战

这里本人也是按照网上的链接进行学习和复现,这里推荐几个我看到的很好的链接

B站面具佬的详细教学视频

yolov5计算fps

神经网络的计算量(FLOPs)、参数量(Params)、推理时间(FPS)的定义及实现方法

在这三个写的很详细了,本人就偷懒一下。在复现上述提到的方法时出现了问题我再进行更新。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图像阿克曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值