depth anything解读与复现教程

TikTok与高校合作的DepthAnything技术能从2D图像中高效提取深度信息,提升3D转换质量。本文介绍了技术原理、论文贡献、模型复现步骤,以及未来可能的研究方向,如模型优化转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

depth anything介绍

depth anything复现

源码和权重文件clone

配置环境

运行

如果你仅仅是想试用一下效果

进一步展望


depth anything介绍

 近日,TikTok发布一项新型AI技术“DepthAnything”,该技术由TikTok联合香港大学和浙江大学共同研发的一种先进单目深度估计(MDE)技术,能更有效地从2D图像中识别出深度信息图。基于这些深度信息图,普通的2D影像便可转化为3D影像。相比此前已有技术,“DepthAnything”在提升深度图的质量方面取得重大突破。此技术的应用将使得TikTok平台上现有的海量2D影像能够轻松转化为3D影像,让普通手机拍摄的2D影像“一键转3D”,或将大幅推进XR产业的发展。


论文地址:Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data

源码地址:GitHub - LiheYoung/Depth-Anything: Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data. Foundation Model for Monocular Depth Estimation

这篇论文的主要贡献包括:

  • 强调了大规模、低成本和多样化无标注图像的数据扩展对 MDE 价值。
  • 指出了在联合训练大规模有标注和无标注图像方面的一个重要实践方法:不是直接学习原始无标注图像,而是为模型提供更困难的优化目标,让
### DepthAnything 项目复现教程 #### 准备工作 为了成功复现 DepthAnything 项目,需先获取源码和预训练模型权重文件。这可以通过克隆官方仓库来完成[^1]。 ```bash git clone https://github.com/author/repo.git cd repo ``` #### 安装依赖环境 部分 GitHub 项目会附带 `requirements.txt` 文件以简化依赖项管理。如果存在此文件,则可通过如下命令一次性安装所有必需的 Python 库[^2]: ```bash pip install -r requirements.txt ``` 对于未提供 `requirements.txt` 的情况,建议手动查阅文档或 README 中列出的具体版本号并逐一安装所需库。 #### 数据集准备 针对特定任务的数据集整理至关重要。例如,在 MSBDN 项目实例中提到创建专门目录存放数据集,并按照指定结构组织文件有助于后续实验顺利开展[^3]。对于 DepthAnything 来说,可能也需要遵循类似的模式设置自己的数据存储位置。 #### 处理数据流函数 在某些情况下,还需要编写额外脚本来辅助处理原始数据。比如 SySeVR 提到了一个名为 `process_dataflow_func.py` 的工具可以用来解析 pkl 格式的中间表示文件,并构建适合进一步分析使用的语料库格式[^4]。虽然这不是直接属于 DepthAnything 的一部分,但在遇到相似需求时可借鉴此类做法实现自定义功能扩展。 通过上述几个方面的工作,应该能够较为全面地掌握如何从零开始搭建起一套完整的 DepthAnything 实验平台。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图像阿克曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值