阿尔法进化算法(AE)-2024年SCI一区最新算法-公式原理详解与性能测评 Matlab代码免费获取

        声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~

目录

原理简介

一、初始化

二、阿尔法算子

三、边界限制

四、选择策略

算法流程图和伪代码

性能测评

参考文献

完整代码


阿尔法进化算法(Alpha evolution, AE)是一种新型的元启发式算法(智能优化算法),灵感来源于自适应步长的alpha算子更新解。不同于以往的动物园算法,该算法原理新颖,且原文对比的算法达到了106种,非常夸张!该成果由Hao Gao于2024年11月发表在SCI一区顶刊《Engineering Applications of Artificial Intelligence上!

由于发表时间较短,谷歌学术上还没人引用!你先用,你就是创新!

原理简介

、初始化

随机初始化的公式可以用如下方式描述:

其中𝑋i表示𝑖th候选解,𝑙𝑏和𝑢𝑏分别表示搜索空间的下界和上界;rand为均匀分布在[0,1]范围内的随机数;N表示解决方案的数量。

二、阿尔法算子

候选解的集合被定义为候选矩阵,而进化矩阵是候选矩阵的子集。在进化过程中,不直接进化当前候选矩阵中的每个解𝑋,而是对进行一次带有替换操作的采样,得到待进化的进化矩阵。下图和下式描述了这种关系:

一个优秀的搜索算子对于引导算法发现更高质量的解起着至关重要的作用。该算法仅依赖于alpha操作符来实现高效搜索。在该算子中,进化信息的提取和利用的多个步骤在一个算子中同时进行。算子的数学模型如式(3)所示:

自适应基向量在解的更新中起着至关重要的作用,因为它决定了进化起点:

diagonal表示一个函数,它是一个𝐷th阶方阵,通过替换𝐷乘以的候选解进行采样得到。其中,B是一个行为K,列为D的矩阵,它是通过不替换的抽样得到的。下图显示了如何执行对角线A和wB。下式中wi:k表示方程中ith解的权值:

在上述描述的基础上,使用Eq.(6)构建了两条不同的进化路径:

式中𝑐𝑎和𝑐𝑏分别代表了Pa和Pb的学习速率,他们都表示为1−𝐹𝐸𝑠∕𝑀𝑎𝑥𝐹𝐸𝑠。

对于随机步长α𝜟𝐫i,该组件提供了全局搜索功能。衰减因子是一个非线性递减值,利用式(7)计算:

其中,𝑠表示适应度评估,而𝑀𝑎𝑠表示最大适应度评估(对目标函数的最大调用次数);𝑒表示指数函数,ln表示自然对数函数。

𝜟𝐫定义为在时延影响下逐渐消失的扰动,由式(8)计算:

其中𝐑1和𝐑2表示rand(0,1,[N,𝐷])生成的随机实数矩阵,用于产生扰动,而表示randi(0,1,[N,𝐷])生成的只包含0或1的随机整数矩阵,基于维数来权衡扰动。

三、边界限制

边界约束方法保证了算法在搜索空间内的有效搜索。常见的边界约束方法如裁剪、随机、反射、周期、减半距离等。在AE算法中,采用距离减半方法,如式(9)所示:

四、选择策略

选择策略是将相关解添加到下一代集的方法。常见的选择策略包括贪婪选择、轮盘选择、锦标赛选择、截断选择等。其中,贪婪选择通过一种简单的方法将进化成功的解传递给下一代,而不需要额外的操作。因此,将这种选择策略引入到AE算法中,其模型可由式(10)表示:

算法流程图和伪代码

为了使大家更好地理解,这边给出作者算法的流程图和伪代码,非常清晰!

如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!

性能测评

原文作者在CEC2017基准函数上与106种算法进行了比较,并用于解决多序列比对和工程设计问题。结果表明,AE算法在勘探开发、收敛速度和精度、避免局部最优、适用性和可靠性等方面具有竞争力。

这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和23年新出的霜冰优化算法RIME进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!

可以看到,这个算法在大部分函数上均优于RIME算法,说明该算法性能还是比较不错的!大家应用到各类预测、优化问题中也是一个不错的选择~

参考文献

[1]Gao H, Zhang Q. Alpha evolution: An efficient evolutionary algorithm with evolution path adaptation and matrix generation[J]. Engineering Applications of Artificial Intelligence, 2024, 137: 109202.

完整代码

如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:

AE

也可点击下方小卡片,再后台回复个人需求(比如AE-SVM)定制以下AE算法优化模型(看到秒回):

1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、TCN、BiTCN、ESN、Transformer等等均可~

2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~

3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~

4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~

5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、故障诊断等等均可~~

6.原创改进优化算法(适合需要创新的同学):原创改进2024年的阿尔法进化算法AE以及班翠鸟PKO、蜣螂DBO等任意优化算法均可,保证测试函数效果!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值