这是一篇综述笔记,作者并没有特别进行整理,推荐阅读原文
数字孪生建模 (Digital twin modeling)(07/2022)
作者: Fei Tao; Bin Xiao; Qinglin Qi; Jiangfeng Cheng; Ping Ji; |
期刊: Journal of Manufacturing Systems (发表日期: 07/2022) |
期刊分区ㅤㅤ ㅤㅤIF 12.2 ㅤㅤ ㅤㅤㅤㅤ ㅤㅤㅤㅤ ㅤㅤSCI Q1 ㅤㅤ ㅤㅤㅤㅤ ㅤㅤㅤㅤ ㅤㅤAJG 1 ㅤㅤ ㅤㅤㅤㅤ ㅤㅤㅤㅤ ㅤㅤ中科院 工程技术2区 ㅤㅤ ㅤㅤ |
**DOI: **10.1016/j.jmsy.2022.06.015 |
**摘要翻译:**数字孪生是数字化转型和智能升级的重要新兴技术。在数据和模型的驱动下,数字孪生可以执行监控、模拟、预测、优化等操作。具体来说,数字孪生建模是准确描绘物理实体的核心,它使数字孪生能够提供功能服务并满足应用要求。因此,本文对数字孪生建模的当前研究进行了系统研究。由于数字孪生模型忠实地反映了数字孪生建模性能,因此首先从应用领域、层次结构、学科、维度、通用性和功能的角度对数字孪生模型进行了全面而有洞察力的分析。基于对数字孪生模型的分析,根据我们之前工作中提出的数字孪生建模理论体系中的六个建模方面,对当前数字孪生建模的研究进行了分类和分析。同时,研究和总结了数字孪生建模的使能技术和工具。最后,提出了观察结果和未来的研究建议。 |
📜 研究核心
🌌 研究背景
- 数字孪生是一种新兴且关键的数字转型和智能升级技术。数字孪生依靠数据和模型来实现监测、仿真、预测和优化等功能。
- 数字孪生建模是准确描述物理实体的核心,使数字孪生能够提供功能服务并满足应用需求。
- 近年来,数字孪生相关论文数量呈现快速增长趋势,数字孪生也被列为连续三年的Gartner公司十大战略技术趋势。
- 现有的文献主要关注数字孪生的定义、概念和框架,但对数字孪生建模和模型的系统性研究还不够深入。
🦾 研究目的
- 从应用领域、层次、学科、维度、普适性和功能等多个角度,全面总结和分析当前可用的数字孪生模型。
- 根据数字孪生建模理论体系中的六个建模方面,对现有的数字孪生建模研究进行分类和分析。
- 探究六个数字孪生建模方面所使用的支撑性技术和工具。
- 提出未来的研究方向和解决现有问题及新兴挑战的潜在方法
⚙️ 内容
Tao 等 [9] 提出了五维数字孪生模型,包括物理实体、虚拟模型、连接、数据和服务。虚拟模型由几何模型、物理模型、行为模型和规则模型四个维度的子模型组成。
这些子模型配备了自己的特性和功能。通过组装或融合上述子模型,可以实现数字孪生模型对物理实体的虚拟映射。
数字孪生建模是在虚拟空间中对物理资产的属性、方法、行为等特征进行数字化建模。
四个模型维度
在虚拟空间中,基于物理实体的属性,数字孪生模型可以用四个模型维度来表示:几何、物理、行为和规则 [9]。
几何模型描述物理实体的几何形状和装配关系。
物理模型反映了物理实体的物理属性、特征和约束。
行为模型表示物理实体响应内部和外部机制的动态行为。
规则模型整合了历史数据,可以利用隐性知识,使数字孪生模型更加智能。
-
几何模型描述物理实体的几何形状和装配关系。几何模型构造描绘了物理实体的形状、大小、内部结构、空间位置和姿态以及装配界面。对于几何模型构建,模型保真度和简化度值得关注。
- 几何模型不仅用于成型,而且其结构完整性和数据准确性也为运动分析、优化设计、虚拟交互等奠定了基础。因此,