[离散数学]集合论基础P_1:集合的初见


前言

第一讲:集合论基础

集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域,是基础的基础。

在离散数学中,需要使用集合来表达各类离散量以及离散量之间的关系,所以首先学习集合论是重中之重。

本文集合的初见是集合论基础的第一部分。


1. 集合定义

定义

  • 简而言之:集合就是一组对象

A set is a group of objects. (simplest way)

  • 集合论的创始人格奥尔格·康托尔是这么定义集合的:
     
    集合是任意的一种"collection M",其由一组确定的并且各不相同的对象m构成,m则被称为集合中的元素。
     
    m可以来自感官或者想法。

By a set we mean any collection M into a whole of definite objects m (which we called elements of M) of our perception or of our thought. (Cantor’s way)

  • 用中文定义集合
     
    集合是由指定范围内的满足给定条件的所有对象聚集在一起构成,每一个对象称为这个集合的元素。
     
    但是康托尔创建的朴素集合论存在多种悖论,如罗素悖论(理发师悖论),最后数学家们创建了公理化集合论,即利用一组公理来定义集合,从而避免悖论产生。
     
    策梅洛-弗兰克尔集合论(Zermelo-Fraenkel Set Theory),即ZFC系统是一种比较常见,提出也比较早的“公理集合论”。
     
    ZFC公理化集合论包含了:外延公理+空集存在公理+无序对公理+并集公理+幂集公理+无穷公理+替换公理+正则公理+选择公理。(ZFC公理化集合论)

其中除选择公理外前八个公理被称作ZF公理化集合论
C代表选择公理。

它们描述的都是集合最根本的属性。

这九种公理在后续讲解中都会涉及,但不会以原始的公理形式给出,避免太过抽象。

例子

  1. 所有的英文字母
  2. 所有小于100的正奇数
  3. 中国所有的残疾人
  4. 世界上所有的数学家
  5. 某植物园的所有植物
  6. 天安门广场所有的路灯和树

集合的定义相对是比较随意的。
从而诞生了公理化集合论,在保留随意性的同时也要遵守所有公理化集合论规定的规则。

集合的符号表示

集合的数学符号

通常情况下

  • 用带或不带下标的大写英文字母表示集合 A , B , C , ⋯   , A 1 , B 1 , C 1 , ⋯ A,B,C,\cdots ,A_1,B_1,C_1,\cdots A,B,C,,A1,B1,C1,
  • 用带或不带下标的小写英文字母表示元素 a , b , c , ⋯   , a 1 , b 1 , c 1 , ⋯ a,b,c,\cdots ,a_1,b_1,c_1,\cdots a,b,c,,a1,b1,c1,

常用集合

  • 自然数集合 N : 0 , 1 , 2 , 3 , ⋯ N:0,1,2,3,\cdots N:0,1,2,3,
  • 整数集合 Z : ⋯   , − 2 , − 1 , 0 , 1 , 2 , ⋯ Z:\cdots ,-2,-1,0,1,2,\cdots Z:,2,1,0,1,2,
  • 有理数集合 Q Q Q与实数集合 R R R,等等

属于关系

定义

  • a a a是集合 A A A中的元素,则称 a a a属于 A A A,记为 a ∈ A a\in A aA
  • a a a不是集合 A A A中的元素,则称 a a a不属于 A A A,记为 a ∉ A a\notin A a/A

例子

  • 2 ∈ N 2\in N 2N
  • − 2 ∉ N -2\notin N 2/N
  • 2 3 ∈ Q 但 π ∉ Q \frac{2}{3}\in Q\text{但}\pi \notin Q 32Qπ/Q

N表示自然数集
N+表示正整数集
Z表示整数集
Q表示有理数集
R表示实数集


2. 集合表示

使用数学符号来具体表示一个集合。

枚举法

列出集合中的全部元素或者仅列出一部分元素,其余用省略号(……)表示。

e.g.

  • A = { a , b , c , d } A=\left\{ a,b,c,d \right\} A={a,b,c,d}
  • B = { 2 , 4 , 6 , 8 , 10 , ⋯   } B=\left\{ 2,4,6,8,10,\cdots \right\} B={2,4,6,8,10,}

如果前面部分元素不能推导出后面元素是什么,就不能使用枚举法。

叙述法

通过刻画集合中元素所具备的某种性质或特性来表示一个集合。

P = { x ∣ P ( x ) } P=\left\{ x\left| P\left( x \right) \right. \right\} P={xP(x)}

e.g.

  • A = { x ∣ x 是英文字母中的元音字母 } A=\left\{ x\left| x\text{是英文字母中的元音字母} \right. \right\} A={xx是英文字母中的元音字母}
  • B = { x ∣ x ∈ Z , x < 10 } B=\left\{ x\left| x\in Z, x<10 \right. \right\} B={xxZ,x<10}
  • C = { x ∣ x = 2 k , k ∈ N } C=\left\{ x\left| x=2k, k\in N \right. \right\} C={xx=2k,kN}

文氏图

文氏图是利用平面上的点来做成对集合的图解方法。一般使用平面上的方形或圆形表示一个集合,而使用平面上的一个小圆点来表示集合的元素。

e.g.
文氏图

3. 集合基数

定义

  • 集合 A A A中的元素个数被称为集合的基数base number),记为 ∣ A ∣ \left| A \right| A
  • 若一个集合的基数是有限的,称该集合为有限集finite set
  • 若一个集合的基数是无限的,称该集合为无限集infinite set

例子

  • A = { a , b , c } , A=\left\{ a,b,c \right\} , A={a,b,c}, ∣ A ∣ = 3 \left| A \right|=3 A=3
    A的基数为3
  • B = { a , { b , c } } , B=\left\{ a,\left\{ b,c \right\} \right\}, B={a,{b,c}}, ∣ B ∣ = 2 \left| B \right|=2 B=2
    B的基数为2
    集合作为另一个集合中的元素存在

总结

本文简要介绍了集合论基础中的集合的初见部分,对集合有一个初步的了解。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

H3T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值