环的定义与基本性质
一、环的定义与基本性质
-
环的定义:
-
**环(Ring)**是一个集合 R R R 和两个运算(加法和乘法),使得 R R R 满足以下条件:
- 加法运算使
R
R
R 成为一个阿贝尔群(交换群)。即:
- 加法封闭:对于 a , b ∈ R a, b \in R a,b∈R,有 a + b ∈ R a + b \in R a+b∈R。
- 加法交换律:对于 a , b ∈ R a, b \in R a,b∈R,有 a + b = b + a a + b = b + a a+b=b+a。
- 加法单位元:存在单位元 0 ∈ R 0 \in R 0∈R,使得对于任意 a ∈ R a \in R a∈R,有 a + 0 = a a + 0 = a a+0=a。
- 加法逆元:对于任意 a ∈ R a \in R a∈R,存在逆元 − a ∈ R -a \in R −a∈R,使得 a + ( − a ) = 0 a + (-a) = 0 a+(−a)=0。
- 乘法运算满足:
- 乘法封闭:对于 a , b ∈ R a, b \in R a,b∈R,有 a ⋅ b ∈ R a \cdot b \in R a⋅b∈R。
- 分配律:乘法对加法具有分配性,即对于任意
a
,
b
,
c
∈
R
a, b, c \in R
a,b,c∈R,有:
a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a \cdot (b + c) = a \cdot b + a \cdot c a⋅(b+c)=a⋅b+a⋅c
( a + b ) ⋅ c = a ⋅ c + b ⋅ c (a + b) \cdot c = a \cdot c + b \cdot c (a+b)⋅c=a⋅c+b⋅c
- 加法运算使
R
R
R 成为一个阿贝尔群(交换群)。即:
-
注:在一个环中,乘法不需要是交换的(即 a ⋅ b a \cdot b a⋅b 不必等于 b ⋅ a b \cdot a b⋅a),也不要求乘法有单位元。
-
-
环的四个公理总结:
- 加法封闭性:加法运算封闭性。
- 加法交换性:加法交换律。
- 加法单位元:存在加法单位元。
- 加法逆元:存在加法逆元。
- 乘法封闭性:乘法运算封闭性。
- 分配律:乘法对加法分配。
二、环的例子
-
整数环 Z \mathbb{Z} Z:
- 加法:整数的加法构成一个阿贝尔群。
- 乘法:整数的乘法满足分配律,但整数环并不是交换环,因为对于某些集合中的元素,乘法不满足交换律。
-
多项式环 R [ x ] \mathbb{R}[x] R[x]:
- 加法:多项式的加法使 R [ x ] \mathbb{R}[x] R[x] 成为阿贝尔群。
- 乘法:多项式乘法满足分配律,是一个环。乘法在此环中是交换的,因此 R [ x ] \mathbb{R}[x] R[x] 是交换环。
-
矩阵环 M n ( R ) M_n(\mathbb{R}) Mn(R):
- 加法:矩阵加法满足阿贝尔群的四个条件。
- 乘法:矩阵乘法满足分配律,但矩阵环不满足交换律,因此它是非交换环。
三、环与群的关系
-
环与群的相似性:
- 群是一种只有一种运算(满足结合律、单位元素和逆元素)而没有必要满足加法运算的代数结构。
- 环是由加法和乘法两个运算组成的代数结构。环的加法部分形成一个阿贝尔群,但乘法部分不要求有单位元素,也不要求满足交换律。
-
环与群的区别:
- 群只能有一种运算,而环有加法和乘法两种运算。
- 群要求乘法有逆元,而环并不要求乘法有逆元。
- 环的乘法不要求满足交换律,但群要求运算是可交换的。
四、课堂活动
1. 通过具体实例,讲解不同环的性质
活动内容:
-
例题 1: 验证整数环 Z \mathbb{Z} Z 满足环的四个公理,特别是如何验证加法封闭性、加法交换律、加法单位元、加法逆元以及乘法封闭性。
- 验证加法封闭:对于任意 a , b ∈ Z a, b \in \mathbb{Z} a,b∈Z,有 a + b ∈ Z a + b \in \mathbb{Z} a+b∈Z。
- 验证加法交换律:对于任意 a , b ∈ Z a, b \in \mathbb{Z} a,b∈Z,有 a + b = b + a a + b = b + a a+b=b+a。
- 验证加法单位元:单位元是 0,对于任意 a ∈ Z a \in \mathbb{Z} a∈Z,有 a + 0 = a a + 0 = a a+0=a。
- 验证加法逆元:对于任意 a ∈ Z a \in \mathbb{Z} a∈Z,存在逆元 − a ∈ Z -a \in \mathbb{Z} −a∈Z,使得 a + ( − a ) = 0 a + (-a) = 0 a+(−a)=0。
- 验证乘法封闭:对于任意 a , b ∈ Z a, b \in \mathbb{Z} a,b∈Z,有 a ⋅ b ∈ Z a \cdot b \in \mathbb{Z} a⋅b∈Z。
-
例题 2: 验证多项式环 R [ x ] \mathbb{R}[x] R[x] 满足环的四个公理,重点讨论如何通过加法和乘法的运算规则来验证这些性质。
2. 探讨环与群的关系
活动内容:
- 例题 1: 讨论矩阵环 M 2 ( R ) M_2(\mathbb{R}) M2(R) 是否满足群的性质,并探讨其加法部分是否构成阿贝尔群,乘法部分是否满足群的性质。
五、Python代码实现示例
整数环的验证:
import numpy as np
# 定义整数加法和乘法
def addition(a, b):
return a + b
def multiplication(a, b):
return a * b
# 验证加法封闭性
def check_addition_closed():
for a in range(-10, 11):
for b in range(-10, 11):
if addition(a, b) not in range(-10, 11):
return False
return True
# 验证加法交换律
def check_addition_commutative():
for a in range(-10, 11):
for b in range(-10, 11):
if addition(a, b) != addition(b, a):
return False
return True
# 验证加法单位元
def check_addition_identity():
for a in range(-10, 11):
if addition(a, 0) != a:
return False
return True
# 验证加法逆元
def check_addition_inverse():
for a in range(-10, 11):
if addition(a, -a) != 0:
return False
return True
# 验证乘法封闭性
def check_multiplication_closed():
for a in range(-10, 11):
for b in range(-10, 11):
if multiplication(a, b) not in range(-100, 101):
return False
return True
# 输出验证结果
print("加法封闭性:", check_addition_closed())
print("加法交换律:", check_addition_commutative())
print("加法单位元:", check_addition_identity())
print("加法逆元:", check_addition_inverse())
print("乘法封闭性:", check_multiplication_closed())
总结
通过这节课,将了解环的定义、基本性质和常见例子,理解环与群的关系,并通过具体实例来加深对环的概念的理解。