如果你要找一份工作,那就找一份高薪的。不要再浪费时间在办公室里从早到晚埋头苦干,无法充分发挥你的潜力。了解哪些职位薪资丰厚,然后通过积累经验和获得资质,确保自己能胜任其中一个。才华横溢且雄心勃勃的人可以掌握无限机遇。
以下是今年人工智能领域一些收入最高的职位。如果你觉得这些职位适合你,就做一些研究,报名相关课程,并开始获取资格认证。
一点点行动可能会在今年彻底改变你的生活,2024年人工智能领域收入最高的工作有哪些?
以下是美国职场最火爆的6个最佳职位,你也可以试试
1、提示工程师(Prompt engineers)
提示工程师专门设计和优化AI模型的提示,特别是在自然语言处理(NLP)领域。他们通过创建有效的输入提示来引导AI的响应,从而提升AI模型的性能和准确性。
这一职位要求深入理解NLP,具备创造性地设计提示的能力,以及能够分析和改进提示设计以实现预期效果的能力。可以通过观看视频、参加大学的免费课程,并开始尝试练习设计提示词来不断提升自己的技能。
平均年薪:127,000美元。
2、人工智能研究科学家(AI research scientist)
人工智能研究科学家进行前沿研究,开发新的AI算法和模型。他们的工作领域包括深度学习、计算机视觉、自然语言处理和机器人技术。这个职位通常需要相关领域的博士学位和深厚的理论知识,所以现在可能并不适合你。但这不应该阻止你探索这个职位。通过联系各大高校和研究院一些科学家,看看是否能有机会跟随他们一天。了解他们的工作世界,加入研究助理的行列,从那里逐步提升自己。
平均年薪:130,000美元
3、人工智能软件工程师
人工智能软件工程师将AI功能集成到软件应用中。他们开发包括AI组件的软件解决方案,例如推荐系统、聊天机器人或自动化工具。
这一职位需要扎实的编程技能和对AI技术的理解。如果你已经在工程师的道路上,那么转向AI领域可能是个不错的选择。利用你现有的技能,在这个不断增长且需求旺盛的领域中工作,让你的工作时间更具价值。
平均年薪:147,000美元
4、人工智能产品经理
人工智能产品经理负责AI产品的开发和部署。他们在技术团队和业务利益相关者之间架起桥梁,确保AI解决方案符合市场需求和业务目标。
这个职位需要深入了解AI技术、市场趋势,并具备出色的项目管理能力。如果项目管理已经是你的强项,可以考虑在这个方向上进一步提升。熟悉AI产品,在你的工作中开始使用它们,或者在现有职位中启动一个AI产品项目。这项工作的潜力巨大。
平均年薪:148,000美元
5、人工智能顾问
人工智能顾问帮助企业将人工智能和机器学习整合到他们的运营中,以提升效率、降低成本并推动收入增长。他们与工程师及其他专家紧密合作,帮助客户识别新机会并制定利用人工智能改进业务流程的策略。
这一职位在人工智能领域属于高薪职位之一。你可以加入一家人工智能咨询公司或自己创业。与潜在客户会面,了解他们的业务挑战,然后研究解决方案并提出建议。这一角色要求你具备强烈的学习欲望和自我驱动的能力,并且能够以简单的方式解释复杂问题。
平均年薪:收入者年薪约为155,500美元。
6、人工智能初创公司创始人
人工智能初创公司创始人创建并领导一家专注于开发和商业化人工智能技术的公司。虽然他们可能不会立即获得现金,但通过分红、薪资和公司估值,潜在的高收入是存在的。
成功的人工智能初创公司能够吸引投资,并以高倍数(通常是年收入的20倍或更多)被收购,这取决于技术的创新性和市场影响力。高调的成功退出可以为创始人带来可观的财务回报。
值得一提的是,你不必创办一家人工智能公司就能在人工智能职业中获得丰厚回报。你也可以选择加入一家人工智能初创公司。顶级人工智能公司在其官网上会发布具体职位信息,一些薪资和福利方案远远超过上述提到的职位,特别是如果你在早期加入并获得股权。
平均年薪:无论是拥有公司还是早期加入,潜在的收入都可能非常可观。
如果你正在考虑换工作,并且希望赚取更多收入,那么人工智能领域的职业可能是你的理想选择。深入了解这些职位,找出你需要具备的技能,然后开始重新培训或提升技能。
机会之门仍然敞开,还有足够的时间让你进入这个领域并开启高薪职业生涯。为什么不看看有哪些可能性呢?
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。