Z Highlight:
-
通过生成式AI,开发的成本已经从六个月缩短到可能的一周或几天。因此,过去需要六个月才能完成的项目,如今几百万人甚至数十万人可以在一周内完成。这种在构建许多AI应用程序方面的成本和复杂度的显著降低,意味着我们看到大量新的应用正在蓬勃发展,这些应用之前是不可能实现的。
-
每个知识工作者都可以通过使用AI,特别是生成式AI,获得显著的生产力提升,但有一个前提,就是许多人需要一些培训才能安全有效地使用它。
-
AI的伦理问题是很重要的。AI是一种通用技术,因此伦理问题通常与其应用相关,而不是技术本身。
AI对工作者的影响
如果说到世界上有影响力的人工智能工作者,吴恩达的名字将是第一位的,他是人工智能在线学习开发成功的幕后推手,该平台结合了世界领先大学和公司的教学课程。
主持人:今年年初,在美国举办的2024年国际消费电子展(CES)上,我第一次见到了吴恩达。初次见到他在舞台上的表现,给我的感觉是他非常务实,不夸大其词,令人印象深刻。这次,吴恩达来到了泰国,我们非常感谢KBTG提供的这次机会。我们有幸进行了一次大约15分钟的简短采访。让我们一起看看这次采访的内容吧。我们团队非常荣幸有机会采访您。在开始之前,首先我想请问一下,是什么让您来到泰国的?
吴恩达:我一直希望能访问泰国。所以,当KBTG和K Bank热情地邀请我来访问时,我非常高兴能在这里待几天,并与许多商业和政府领导人会面,看看我们在AI方面可以做些什么。
主持人:关于吴恩达的访谈中提到的多个关于AI的重要议题,我们今天将总结几个关键点。
第一个议题是工作。很多人常常问,AI是否会取代人类的工作?吴恩达的看法有些不同。他认为,AI将会取代一些重复性或常规性的工作,但不会完全取代人类。那些能够有效使用AI的人,将比那些不会使用AI的人更有优势。因此,最重要的是,我们如何抓住这个机会,提高劳动者的技能,让他们学会如何使用AI。
此外,吴恩达创办了Coursera和deeplearning.ai,这极大地推动了全球范围内AI教育的普及和获取。那么,这些平台的创立如何影响全球对AI教育的访问呢?这些问题和思考对我们理解和应对AI时代的挑战和机遇都非常重要。
吴恩达:我觉得自己很幸运,能够在帮助许多人通过学习改变生活的过程中,扮演了一个小角色。我发现科技,尤其是人工智能技术,发展得非常快。不仅对技术人员,对非技术人员来说,对于开发人员和那些可能不是软件工程师的人来说,掌握AI技能可以改变我们所有人的工作方式。当然,除了技术技能之外,Coursera还帮助许多人在各个职业中获得许多与工作相关的技能。我很荣幸能够为这种培训做出贡献,这种培训帮助了许多人获得技能,并且能够做得更多。
主持人:他们的知识,尤其是关于教育部分和对新一代的影响,值得深入探讨。在AI时代,我们应该如何教育新一代,如何教育我们的孩子?我们又该如何与他们沟通?
吴恩达:AI是一种通用技术,所以它对每个人的生活都有很大的变革。我认为在这个时候,每个知识工作者都可以通过使用AI,特别是生成式AI,获得显著的生产力提升,但有一个前提,就是许多人需要一些培训才能安全有效地使用它。因此,我认为DeepLearning.AI和Coursera在这方面可以发挥作用,帮助人们学习使用生成式AI所需的技能。事实上,去年Coursera上增长最快的课程是“人人都能学的生成式AI”,它为人们提供了非技术性的商业级理解,介绍了记者、市场人员、招聘人员、销售人员或软件工程师如何使用生成式AI。
主持人:太棒了。
吴恩达:我们在Coursera上的很多内容都有泰语字幕。我认为我们有20种优先翻译的语言,其中泰语是其中之一。另外,除了为非软件工程师提供AI培训外,我也对软件工程师能够用AI做的事情感到兴奋。事实证明,如果你编写的软件调用OpenAI、Google Gemini或其他类似实体的服务,那么很多AI软件现在可以用比以前少得多的努力来编写。这也导致了AI应用的蓬勃发展。我们与几乎所有领先的AI公司合作,教授最新的工具和技术。令人欣慰的是,许多人正在学习最新的技术技能,并利用这些技能开发出一两年前还不可能实现的令人兴奋的产品。
主持人:这也与另一个问题有关,因为你总是提到要实现AI的民主化。你对实现AI的民主化,使其对每个人都可访问并且对所有人都同样有益有什么看法?
吴恩达:我认为,虽然人工智能变得越来越容易使用,但掌握一些基本技能仍然对有效利用它很重要。以开发者的角度来看,无论是初创公司还是大企业,我可以举个例子来说明。比如说,如果我要构建一个情感追踪系统,例如分析社交媒体上的评论,判断评论是正面的还是负面的,以前,这样的应用程序可能需要一个团队六到十二个月的时间来构建一个强大的企业级AI软件,使用的是一种叫做监督学习的技术。但是现在,通过生成式AI,开发的成本已经从六个月缩短到可能的一周或几天。因此,过去需要六个月才能完成的项目,如今几百万人甚至数十万人可以在一周内完成。这种在构建许多AI应用程序方面的成本和复杂度的显著降低,意味着我们看到大量新的应用正在蓬勃发展,这些应用之前是不可能实现的。
如今,许多企业正在利用AI来回答问题,我们称之为RAG系统。许多公司正在构建AI系统,来查看企业文件并利用这些知识回答问题,服务内部用户或外部客户。此外,还有许多AI聊天机器人、客户服务聊天机器人正在被开发。这些应用程序比一两年前要容易得多,Coursera等平台提供了大量内容来教授如何构建这些应用程序。
AI带来的伦理问题
主持人:这是积极的一面。但让我们来谈谈另一个方面。今天还有一个突出的议题,就是我们所称的伦理问题。当前AI面临的最重要伦理挑战是什么?您会给企业以及所有使用AI的人提供哪些建议,以克服这些问题?
吴恩达:所以我知道在一些国家,虽然泰国相对较少,但曾经有过对AI可能会像科幻电影中那样统治和消灭人类的担忧。但这根本不会发生,这只是科幻小说中的情节,而不是真实的情况。
但确实,AI的伦理问题是很重要的。AI是一种通用技术,因此伦理问题通常与其应用相关,而不是技术本身。例如,如果你使用AI来开发医疗设备,人们对医疗设备的安全性有一定的标准和期望。相比之下,如果你使用AI来制造电动汽车,那么电动汽车的安全标准与医疗设备的安全标准会非常不同。或者,如果你使用AI来检查工厂中智能手机的结构,那又是另一套标准。再比如,如果你使用AI开发承保软件、进行贷款,那么就需要确保它不会对人们产生歧视。
所以我发现,AI的伦理问题更多地与应用相关。因此,我通常建议企业和开发人员,在开发应用时,如果所在行业已经有标准,最好参照这些标准。此外,我的团队经常会提前进行头脑风暴,考虑所有可能出现的问题。通过这样做,我们可以制定监控指标和缓解计划,以确保不接受的结果发生的风险降低或不发生。
利用AI解决社会问题
主持人:我清楚地看到,我们正面临许多社会问题。你认为人工智能在解决关键社会问题,如贫困、教育和气候变化方面能发挥什么关键作用?
吴恩达:AI是一项非常强大的技术,但它也不是魔法。我们需要努力去弄清楚如何将它应用于解决我们认为重要的问题。
以气候变化为例,AI也可以发挥作用。我们与AES合作,AES是世界上最大的可再生能源生产商之一,也是数据中心最大的可再生能源供应商之一。我们正在尝试利用AI使可再生能源更加高效。我希望找到减少碳排放的方法能对抗气候变化。同时,我也在进行基于AI的气候建模研究,以探索是否有技术能够冷却地球。
我觉得教育是一个非常困难而重要的问题。我们和其他人正在探索如何利用AI来支持学生的学习。我希望AI能帮助许多人建立更好的职业,赚取更多财富。然而,我也意识到这是一个更根本的问题,我希望AI能在解决这个问题上发挥作用,但我也不确定它是否能成为这些深层问题的解决方案。
AI对人类生活的影响
主持人:好的,最后我们来谈谈未来。你对AGI的看法是什么?在接下来的十年里,你认为人工智能会如何改变我们的生活和我们的世界呢?
吴恩达:AI可以执行的任务范围正在迅速扩大。实际上,AI现在可以做很多事情。其中一个令人兴奋的技术趋势是所谓的AI agent。这意味着今天许多人使用大型语言模型来生成文章,比如通过提示模型写一篇文章。但通常,这只是把文章从头到尾写出来,而不使用退格键。这样的写作方式确实很困难。代理性AI则采用一种不同的工作流程:首先让AI阅读大纲,然后进行必要的网络搜索和研究,再撰写初稿,然后对初稿进行批评和修订。这样的工作流程可能更接近人类的写作方式。AI可以反复查看和修改文章,以思考和修订,从而产生更好的工作流程。这扩展了AI能够执行的任务范围,这是一个令人兴奋的趋势。
关于AGI,其标准定义是能够执行任何智力任务的AI。也就是说,AGI应该能够学习驾驶汽车、找到某样东西,或者撰写一篇博士论文。按照这个标准定义,我认为我们还可能需要很多年才能实现AGI。我希望我们能在有生之年看到这一目标的实现,但不太确定。一些公司对AGI的定义并不标准,这也是为什么关于AGI的炒作如此强烈的原因。如果我们将AGI的定义重新定义为一个更宽泛的标准,那么当然我们可能在一两年内就能达到。但按照标准的AGI定义,即AI能够完成任何人类能做的智力任务,我认为我们仍然需要几十年的时间,但如果我们能实现这一目标,那将是非常棒的。
主持人:非常感谢您!
关于人工智能在泰国的机会,吴恩达认为这需要政府和私营部门的共同合作。他强调,合作是推动有效应用人工智能的关键,而这种合作只有在具体用例的出现下才能实现。因此,需要进行实验,创建合作关系,并真正开展项目。
在本土方面,泰国应当促进人工智能生态系统的发展,特别是投资于研究、人才培养和社区建设。此外,还需要支持开放源代码软件,以提高人工智能的普及率。最后,避免过度监管,这样才能使创新得以实现。
吴恩达还向商业领导者提供了建议,关于如何在组织中利用人工智能。首先,员工应该具备将人工智能应用于实际工作的技能。例如,利用生成性人工智能工具,如ChatGPT,可以作为员工的智能助手,帮助创造和生产新成果。第二,组织应有专门的团队分析现有的工作流程和过程。第三,应利用人工智能提高效率,并帮助组织内的人员。这将有助于理解人工智能的影响,并制定相应的战略,包括招聘计划。最后,重要的是展望未来,探索如何利用人工智能来开发和创新新服务。这些评估和分析将帮助确定在组织中引入人工智能的最佳方式,无论是自主开发、与合作伙伴共同开发、投资还是购买解决方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。