“智改数转”之简谈工业大数据+AI应用场景探索

1、简析工业大数据概念

工业大数据是指在工业领域,通过传感器、物联网技术等手段采集、传输、存储和处理的海量数据。涵盖了生产过程中的各个环节,包括设备状态、生产效率、质量控制、能源消耗等多个方面。工业大数据的出现,为传统工业带来了前所未有的变革,推动了工业领域的智能化、信息化和数字化转型。

2、简析工业大数据特点和发展趋势

工业大数据的特点,主要体现在:数据量大、数据来源多样、实时性强、价值密度低、技术依赖性强。其中,工业大数据的采集主要依赖传感器技术。传感器可以测量温度、湿度、压力、振动等各种物理量,并将采集到的数据转化为数字信号,然后传输给数据采集系统。此外,还可以通过物联网技术将设备连接到互联网,实现远程监控和数据采集。

随着技术的不断进步和应用场景的不断拓展,工业大数据将呈现以下发展趋势:

数据融合与共享:不同来源、不同格式的数据将实现更加高效的融合与共享,为企业提供更全面的数据支持。

智能化分析:借助机器学习、深度学习等人工智能技术,工业大数据的分析将更加智能化和自动化。

实时性增强:随着物联网技术的普及和5G等通信技术的发展,工业大数据的实时性将得到进一步提升。

安全性提升:随着数据泄露和隐私保护问题的日益突出,工业大数据的安全性和隐私保护将成为重要的发展方向。

特别是工业大数据与AI的结合,正引领着工业领域的深刻变革,为各个行业带来了前所未有的机遇与挑战。

3、工业大数据与AI融合的场景探析

老李认为,目前工业大数据与AI融合的应用场景,主要聚集于以下三个方面:

(1)智能制造是工业大数据与AI融合的核心应用场景之一。

通过实时收集和分析生产线上的海量数据,AI能够精准识别生产过程中的瓶颈与浪费环节,优化生产流程,提高生产效率。例如,AI驱动的机器人可以自动完成焊接、组装等复杂操作,不仅减少了人为错误,还大大提高了生产精度。同时,机器视觉技术的应用,使得生产线上的质量检测更加高效和准确,确保每个产品都符合质量标准。

(2)设备故障是工业生产中常见的问题,往往会导致生产中断和成本增加。工业大数据与AI的结合,为设备预测性维护提供了最佳支撑。

通过实时监测设备的运行数据,AI能够分析设备的健康状态,预测可能的故障类型和时间,提前进行维修和更换。这种预测性维护方式不仅降低了设备故障的风险,还提高了设备的利用率和寿命,为企业节省了大量维护成本。例如,根据生产数据调整设备参数,实现精准控制;通过预测性维护减少设备故障停机时间等。

(3)质量控制是工业生产中不可或缺的一环。工业大数据与AI的结合,为质量控制提供了强大的支持。

通过实时监测和分析生产过程中的质量数据,AI能够及时发现潜在的质量问题,提出改进措施。同时,AI还能根据历史数据和当前生产情况,预测产品质量的变化趋势,为企业制定科学的质量控制策略提供依据。

当然,在能源管理、客户服务方面,老李也看到无论是从企业需求侧还是服务商方案侧,均正在不断进行基于业务数字化创新的建设探索。

l例如,能源管理:通过对能源数据的分析,可以找出能源使用的规律和异常点,进而优化能源的使用和管理。再如,通过数据分析发现某个生产环节的能源消耗过高,可以调整该环节的生产方式或设备参数以降低能耗。

l例如,客户服务:工业大数据还可以用于客户服务领域。通过收集和分析客户数据,可以了解客户的需求和偏好,提供更加个性化的产品和服务。同时,还可以通过数据分析预测市场趋势和客户需求变化,为企业制定市场策略提供参考。

4、工业大数据与AI融合的场景示例

去年老年曾基于e-work一篇专门讲解工业大数据与人工智能相融合的文章,结合作者提出的8大场景和老李相关在实际企业走访、需求交流和自主方案创新内容以及其他服务商活动与新闻的成果分享中的一些收获,进行了相关的研究与应用场景细化展现。

选取部分内容,示例如下:

(1)智能分拣:

(2)设备健康:

(3)基于视觉的表面缺陷检测:

(4)工艺调优:

(5)数字孪生:如孪生数字工厂/智能工厂,数字人在线化交互。

(6)创成式设计:

5、小结

在“智改数转”浪潮下,可见工业大数据与AI的结合正在深刻改变着工业领域的面貌。无论是从智能制造到智能供应链管理,还是从设备预测性维护到能源管理和质量控制,仍是再到客户服务,AI正以其独特的优势和潜力,推动着工业行业的持续发展和创新。

未来,随着技术的不断进步和应用的不断深化,老李有理由相信,工业大数据与AI的融合将为企业“智改数转”带来更多的机遇和可能性,助力企业更好的实现生产过程的业务优化、质量提高和成本降低。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值