J Immunother Cancer(IF=10.3): 基于多模态CT的深度学习技术预测非小细胞肺癌新辅助免疫化疗的疗效

在这里插入图片描述
文献概要

这篇文献是一项多中心研究,旨在利用非侵入性的多模态CT深度学习生物标志物来预测接受新辅助免疫化疗(neoadjuvant immunochemotherapy, NI)的非小细胞肺癌(NSCLC)患者的病理完全缓解(pathological complete response, pCR)。研究通过从非增强CT和增强CT图像中提取深度学习特征,构建了三个模型:LUNAI-uCT(基于非增强CT的模型)、LUNAI-eCT(基于增强CT的模型)和LUNAI-fCT(融合非增强CT与增强CT的模型)。LUNAI-fCT在预测pCR方面的表现最佳,展示了该模型在临床应用中非侵入性地预测免疫化疗效果的潜力。这一发现有助于个性化治疗方案的制定,避免过度治疗。

研究背景

肺癌是全球最致命的恶性肿瘤之一,尤其是非小细胞肺癌(NSCLC)在确诊时多已处于晚期,预后较差。新辅助治疗通常用于降低肿瘤负荷,以提高手术切除的成功率,并改善患者的生存率。近年来,新辅助免疫化疗取得了显著的成果,提升了NSCLC患者的无进展生存期和总体生存期。

新辅助免疫化疗的一个重要治疗效果是达到病理完全缓解(pCR),即肿瘤组织内没有活性癌细胞。然而,目前的pCR评估仍依赖于侵入性的术后病理检测,而放射影像学评估与病理评估之间存在较大差异。放射学影像可能会由于淋巴细胞浸润而误判为肿瘤病灶,导致对实际肿瘤响应程度误估。因此,开发一种基于影像学的非侵入性预测工具,以提高对pCR的预测精度,成为当前领域的研究重点。

CT影像是临床上用于监测肿瘤治疗反应的标准工具之一。尽管传统的影像学评价在一定程度上能够提供肿瘤大小和形态变化的信息,但其对免疫治疗效果的预测能力有限。放射组学和深度学习技术通过从CT图像中提取高级别的影像特征,可以捕捉到传统影像学未能识别的肿瘤生物学特性。虽然已有研究表明,基于CT的深度学习方法在预测NSCLC患者的免疫治疗响应中具有潜力,但迄今为止,尚未有研究探索将非增强和增强CT图像结合用于预测pCR的可能性。

研究方法

在这里插入图片描述

总体研究设计示意图

1. 数据来源与患者筛选

本研究回顾性分析了来自四家医疗中心的295名NSCLC患者的数据,这些患者接受了新辅助免疫化疗并进行了手术。最终纳入225名患者,分为训练集和验证集(113名)以及测试集(112名)。纳入标准包括:病理确诊为I至III期NSCLC、完成至少两个周期的新辅助免疫化疗、术后按照IASLC标准进行病理评估。排除标准则包括缺乏术前CT图像、CT成像距治疗时间超过1个月、缺乏完整的临床病理数据。

2. CT图像的获取与预处理

所有患者在治疗前都接受了非增强CT和增强CT扫描,切片厚度在0.625mm到1.25mm之间。为了确保数据的统一性与可比性,所有影像数据均进行了体素重采样和强度归一化。

3. 特征提取与模型构建
3.1 深度学习特征提取

本研究中,深度学习特征提取通过预训练的FM-LCT模型完成。FM-LCT是基于大规模、多样化的肺癌影像数据集,通过掩码自编码器(MAE)的对比学习算法进行预训练的,该模型能够自动从CT图像中提取出丰富的深层次特征,而无需人工设计特征。FM-LCT在本研究中从非增强CT(uCT)和增强CT(eCT)图像中分别提取深度学习特征。

3.2 uCT和增强eCT特征提取

在图像预处理完成后,研究人员在每个患者的非增强CT和增强CT图像中,使用一个3D bounding box 框定肿瘤区域。随后,FM-LCT模型从该包围框中提取出768个的深度学习特征向量。这些特征分别记为:FS-uCT,FS-eCT。

3.3 特征融合与降维
  1. 特征融合:将FS-uCT和FS-eCT两个特征向量通过平均池化(average pooling)进行融合,形成一个新的融合特征集,称为FS-fCT。

  2. 主成分分析(PCA)降维:为了避免模型过拟合,研究采用了主成分分析(PCA)对特征进行降维,从原始的768个特征中提取出16个最具代表性的关键特征。这些特征经过了Pearson和Spearman相关性分析,以确保它们能够为模型提供有用的信息。

3.4 模型构建

基于上述提取的特征,研究构建了三个预测模型:(1)LUNAI-uCT模型:仅使用FS-uCT来进行pCR预测。(2)LUNAI-eCT模型:仅使用FS-eCT来进行pCR预测。(3)LUNAI-fCT模型:使用融合的FS-fCT特征构建融合模型。

研究选择了随机森林算法来构建这三个模型,主要因为随机森林能够处理高维数据,并且具备较强的泛化能力。此外,模型的输出概率被用来生成一个称为免疫化疗响应评分(Immu_TR score)的指标,用于量化患者在新辅助免疫化疗后达到pCR的可能性。

4. 模型评估与解释

研究使用了多种指标评估模型的性能。模型的贡献性分析则通过SHapley Additive exPlanations(SHAP)技术进行,用来评估各个特征对模型预测结果的重要性。此外,研究还使用了Grad-CAM(梯度加权类激活映射)技术,生成显著性热图,直观展示深度学习模型在图像中的关注区域,帮助解释模型是如何基于肿瘤及其周围的特征来进行pCR预测的。

研究结果

1. 患者特征

最终的数据集包括225名患者,患者的年龄中位数为60岁,男性患者占88.4%,吸烟患者占62.2%。病理类型主要为鳞状细胞癌(75.1%),而病理分期主要集中在IIIA和IIIB期。

2. 模型性能

在测试集中,三个模型的AUC表现如下:

(1)LUNAI-uCT:AUC为0.762,准确率为67.6%,敏感性为95.8%,特异性为53.2%,反映出该模型在预测pCR时具有较高的敏感性,但假阳性率也较高。

(2)LUNAI-eCT:AUC为0.797,准确率为71.6%,敏感性为83.3%,特异性为66.0%,在假阳性率上较LUNAI-uCT有所改善。

(3)LUNAI-fCT:AUC为0.866,准确率为80.0%,敏感性为91.7%,特异性为73.9%,表现为三个模型中最优。

在这里插入图片描述

三种预测pCR模型的性能

3. 模型的解释性分析

研究通过SHAP和Grad-CAM技术进一步分析了模型的决策机制。在SHAP图中,可以看到不同特征对模型预测的贡献。例如,在LUNAI-uCT模型中,特征1和特征2对模型预测有最大的影响,而在LUNAI-fCT模型中,特征2和特征14对模型的贡献最大。Grad-CAM生成的显著性热图显示,深度学习模型主要从肿瘤区域以及肿瘤周围的组织提取特征信息,以做出pCR预测。这种解释性增强了模型在临床应用中的可信度。

在这里插入图片描述

SHAP分析

4. 免疫化疗响应评分(Immu_TR Score)

在实际应用中,研究人员为每个患者生成了一个Immu_TR评分,用于量化患者达到pCR的可能性。通过两位临床特征相似的患者的实例展示,Immu_TR评分为0.791的患者最终确诊为pCR,而评分为0.213的患者未达到pCR。这进一步表明,LUNAI-fCT模型可以准确预测pCR,并且为医生提供了一个定量化的指标,帮助决策。

在这里插入图片描述

研究结论

本研究通过从非增强和增强CT图像中提取深度学习特征,成功构建了预测pCR的非侵入性影像学生物标志物。融合模型LUNAI-fCT表现最优,显示出显著的预测能力。这一研究表明,通过结合CT影像的多模态特征,可以更准确地预测NSCLC患者在新辅助免疫化疗后的治疗反应。这一技术有望帮助临床医生制定个性化的治疗方案,避免过度治疗,尤其是对于那些有望达到pCR的患者,可以减少不必要的淋巴结清扫。

主要创新点

1、多模态影像融合:首次将非增强CT和增强CT的影像特征相结合,利用深度学习技术构建了预测pCR的模型。相比于传统的单模态CT影像,融合模型能够更全面地捕捉肿瘤及其微环境的特征。

2、深度学习特征提取:研究使用了预训练的FM-LCT模型,从大规模、多样化的肺癌影像数据中提取深度学习特征,提高了特征提取的效率和预测模型的性能。

3、可解释性模型:通过Grad-CAM和SHAP分析,研究为模型预测过程提供了可视化解释,增强了其临床应用的可解释性和信任度。

4、临床应用潜力:该模型可作为一个非侵入性的影像学生物标志物,帮助预测NSCLC患者的免疫化疗效果,为个性化治疗决策提供支持。

研究局限性

1、回顾性研究设计:由于本研究为回顾性设计,可能存在选择偏倚。未来的研究应进行前瞻性临床试验,以验证模型的准确性和泛化能力。

2、样本量有限:尽管本研究为多中心研究,但每个中心的样本量较少,限制了模型的泛化能力。未来研究应扩大样本量,并进行更多的多中心验证。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值