借助DeepSeek R1的编程能力,虽然能够快速地生成代码,但对于多文件的结构化项目,网页版的DeepSeek就显得有些力不从心。同时,项目中的环境管理,报错调试等,都难以使用AI进行调试。对于零代码基础的读者,想要实现编程更是遥不可及。
但是!这篇文章将会教你不写一行代码,开发一个贪吃蛇小游戏。
整个小游戏的开发过程如下,整个过程不敲一行代码,工具将自动进行编程与调试。而你只需要输入需求,点击蓝色按钮,就可以完成小游戏的开发。
1. 硅基流动DeepSeek API
DeepSeek官方API资源有限,并且比较卡顿,我们使用硅基流动的DeepSeek API。
首先进入硅基流动官网https://www.siliconflow.com/zh/home。
点击右上角的登录。
使用手机号注册,注册码填写M3Tt2XFC。
注册完成后,将会跳转至模型广场,点击左侧的API密钥。
点击新建API。
密钥可命名为deepseek,也可以命名为其它名称。命名完成后,点击新建密钥。
创建完成后,将会显示已创建的密钥,点击密钥即可复制。
注册完成后,硅基流动将会赠送14元的余额,DeepSeek API的价格非常低,14元足够使用很长一段时间。
2.安装Python与VSCode
VSCode可以说是每个程序员的标配,Python是最简单的编程语言,安装过程非常简单,可以自行百度,下面是一篇参看,按照教程完成后,即可开始下面的步骤。
https://blog.csdn.net/qq_51646682/article/details/144577810
3.安装VSCode Cline插件
打开vscode,选中左侧的扩展选项,或按快捷键 ctrl + shift + x,搜索Cline并点击安装。
安装成功后,左侧将会出现一个Cline的图标,我们点击这个图标,打开Cline。API Provider选择OpenAI Compatible,并填写Base URL为https://api.siliconflow.cn/v1,API Key中粘贴你在硅基流动中注册的密钥,Model ID填写deepseek-ai/DeepSeek-R1。注意,下方的Custom Instructions要填写“请使用中文回答”,不然回复很可能是英文,填写完成后,点击右上角的done。
完成设置后,即可开始开发。为了方便开发,我们将Cline移动到辅助侧边栏。右键点击Cline图标 移动到->辅助侧边栏 ,此时
至此,Cline配置完成。
4.开始编程
在桌面中新建一个文件夹,命名为“AI编程”或“贪吃蛇”。
在VSCode中点击 文件->打开文件夹 用VSCode打开这个文件夹。
接下来,在右侧的Cline中输入指令:
- 我希望使用Python创建一个贪吃蛇小游戏,保证游戏的可玩性,同时,我希望你能够保证画面的精美,绘制精美的贪吃蛇、水果。背景、贪吃蛇、水果等都需要你自己绘制。
接下来,DeepSeek将会自动完成编程任务。
当显示API Request时,说明正在请求,等待请求完毕即可。
当DeepSeek想要执行命令时,点击蓝色按钮“Run Command”即可。若出现报错,DeepSeek会自动进行调试,修改报错。
当DeepSeek完成代码后,点击蓝色按钮“Save”保存写好的代码。
DeepSeek在代码完成后,将会自动执行代码。需要注意的是,DeepSeek支持输入的Token数量较少,因此更适合写更为简短的代码,在输入要求时,也可以提出要求,使得代码尽量精简。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。