港理工提出TokenSkip:让大模型在CoT中“跳”过冗余token,压缩40%,性能几乎不降!

大家好,今天我们要聊的是一篇关于LLM的论文,主题是如何让大模型的“思维链”(Chain-of-Thought, CoT)变得更高效。大家都知道,大模型在处理复杂问题时,会生成一系列的推理步骤,这就是所谓的“思维链”。虽然这种推理方式很强大,但随着推理步骤的增加,生成的token数量也会直线上升,导致推理速度变慢,用户体验变差。想象一下,你问大模型一个问题,结果它给你吐出一篇“论文”那么长的推理过程,你是不是会有点崩溃?

论文:TokenSkip: Controllable Chain-of-Thought Compression in LLMs
地址:https://arxiv.org/pdf/2502.12067

这篇论文的作者们发现,其实并不是所有的token都对推理结果有同等贡献。有些token是“划水”的,完全可以跳过!于是,他们提出了一个叫TokenSkip的方法,让大模型在推理时能够自动跳过那些不重要的token,从而实现可控的思维链压缩。这样一来,推理速度提升了,用户体验也更好了,简直是一举两得!

方法:TokenSkip - 让大模型“跳”起来!

那么,TokenSkip到底是怎么做到的呢?让我们来一探究竟!

核心思想:不是所有token都重要!

首先,作者们发现,思维链中的token并不是平等的。有些token对推理结果至关重要,比如数学公式和关键数字;而有些token则相对“划水”,比如一些连接词(如“所以”、“因为”)。基于这个发现,TokenSkip的核心思想就是:让大模型学会跳过那些不重要的token,只保留关键的推理步骤。

对比了普通CoT和TokenSkip的生成过程,生动展示了“跳过冗余token”的效果。

对比了普通CoT和TokenSkip的生成过程,生动展示了“跳过冗余token”的效果。

具体实现:如何让大模型学会“跳”?

TokenSkip的实现分为三个步骤:token修剪、训练和推理。

Token修剪:首先,TokenSkip会根据每个token的语义重要性进行排序,然后根据设定的压缩比例,保留最重要的token,去掉那些“划水”的token。这个过程就像是在修剪一棵树,去掉多余的枝叶,保留主干。

不同token重要性评估方法的对比,帮助理解哪些token被判定为“不重要”。

不同token重要性评估方法的对比,帮助理解哪些token被判定为“不重要”。

训练:接下来,TokenSkip会用修剪后的思维链数据对大模型进行微调。为了让大模型学会在不同的压缩比例下工作,训练数据中会包含不同压缩比例的思维链。这样一来,大模型就能学会在不同的压缩比例下进行推理。

TokenSkip的训练和推理流程,清晰解释了数据压缩和模型适配的过程。

TokenSkip的训练和推理流程,清晰解释了数据压缩和模型适配的过程。

推理:在推理阶段,TokenSkip会让大模型根据设定的压缩比例,自动跳过那些不重要的token,生成压缩后的思维链。这样一来,推理速度就大大提升了!

实验:TokenSkip真的有效吗?

为了验证TokenSkip的有效性,作者们进行了一系列实验,主要使用了两个数学推理基准数据集:GSM8K和MATH-500。实验结果表明,TokenSkip在压缩思维链的同时,依然保持了强大的推理能力。

实验结果:压缩40%,性能几乎不降!

在GSM8K数据集上,Qwen2.5-14B-Instruct模型在使用TokenSkip后,推理token数量减少了40%(从313个减少到181个),而性能下降不到0.4%!这意味着,TokenSkip不仅大幅提升了推理速度,还几乎不影响模型的推理能力。

不同压缩比例下的性能变化,直观体现“压缩不降精度”的优势。

不同压缩比例下的性能变化,直观体现“压缩不降精度”的优势。

对比实验:TokenSkip完胜其他方法!

作者们还对比了TokenSkip和其他两种常见的长度控制方法:基于提示的压缩和截断法。实验结果显示,基于提示的压缩方法无法达到指定的压缩比例,而截断法虽然能压缩token数量,但会导致推理性能大幅下降。相比之下,TokenSkip不仅能够精确控制压缩比例,还能保持较高的推理性能。

对比了不同方法的性能,TokenSkip在压缩比例和准确率上全面领先。

对比了不同方法的性能,TokenSkip在压缩比例和准确率上全面领先。

案例分析:TokenSkip如何“跳”过冗余token?

为了更好地理解TokenSkip的工作原理,作者们还提供了一些案例分析。在这些案例中,TokenSkip成功地跳过了那些不重要的token,比如一些连接词和冗余的句子,而保留了关键的数学公式和数字。这些案例表明,TokenSkip并不是简单地缩短思维链,而是学会了在关键推理步骤之间“跳”过冗余信息。

实际案例中TokenSkip的压缩效果,生动体现“跳过划水token”的逻辑。

实际案例中TokenSkip的压缩效果,生动体现“跳过划水token”的逻辑。

结论:TokenSkip - 让大模型推理更高效!

总的来说,TokenSkip通过让大模型学会跳过不重要的token,实现了思维链的可控压缩。实验结果表明,TokenSkip在压缩token数量的同时,几乎不影响模型的推理性能,大大提升了推理速度。对于那些需要快速响应的应用场景,TokenSkip无疑是一个非常有用的工具。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值