导读
此前,我们介绍了很多深度学习基础模型,今天探讨它们各自适用的场景,让您知道在何种情况下选择何种模型;同时分析它们的优势与局限,助您全面评估这些模型的性能。
unsetunset一、卷积神经网络(Convolutional Neural Network, CNN)unsetunset
-
原理 :CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。
-
适用场景 :广泛应用于图像处理相关的任务,包括图像分类、目标检测、图像分割等。此外,也常用于处理具有网格状结构的数据,如文档数据。
-
优势与局限 :
优势 :对二维结构数据有良好的处理能力,能够有效地提取局部特征;权值共享可减少参数数量,降低计算复杂度和模型训练难度。
局限 :主要适用于处理具有二维结构的数据,如图像等;对输入数据的位置变化敏感,可能无法很好地处理位置变化大的数据。
unsetunset二、Transformer模型unsetunset
-
原理 :Transformer基于自注意力机制(Self-Attention),该机制使模型能够关注输入序列中的不同位置,允许网络自动学习重要特征,而无需依赖递归或卷积结构。它通过多头注意力机制将输入序列中的每个元素与其他元素进行比较,并计算出它们之间的相关性权重。然后根据这些权重对输入进行加权求和,得到新的特征表示。
-
适用场景 :Transformer在自然语言处理领域取得了巨大成功,如机器翻译、文本生成、问答系统等任务。同时,也适用于其他涉及序列处理的领域,如时间序列预测等。
-
优势与局限 :
优势 :具有并行计算能力,可同时处理序列中的所有元素,比RNN训练更快;能够捕获序列中元素的长距离依赖关系,适用于处理长序列数据,如长文本等。
局限 :计算复杂度较高,尤其是当序列长度较长时;自注意力机制可能需要大量的计算资源和内存。
unsetunset三、BERT模型unsetunset
-
原理:BERT是一种基于Transformer架构的预训练语言模型,使用双向Transformer编码器来预训练深层上下文表示。它通过掩码语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)两种训练方法进行预训练。MLM随机遮住输入文本中的部分单词,让模型根据上下文预测这些被遮住的词;NSP用于学习文本段落之间的关系,判断两句话是否连续出现。
-
适用场景 :擅长自然语言理解任务,如自然语言推理、问答系统、文本蕴含等,也广泛应用于文本分类、命名实体识别等自然语言处理任务。
-
优势与局限 :
优势 :预训练阶段能够学习到丰富的上下文信息和语言规律,为下游任务提供了强大的语言表示能力;可微调适应不同特定任务,提高了模型的复用性。
局限 :模型较大,参数量多,导致计算资源消耗大,部署和运行成本高;难以对文本的全局结构和长距离依赖进行细致建模,可能在某些复杂任务中表现不足。
unsetunset四、循环神经网络(Recurrent Neural Network, RNN)unsetunset
-
原理 :RNN具有循环连接的神经元结构,能够处理序列数据。它通过隐藏状态将信息从时间步传递到下一个时间步,使得网络能够捕捉序列中元素的时间依赖关系。在每个时间步,输入数据和前一时间步的隐藏状态共同作为输入,经过神经网络的计算,产生当前时间步的隐藏状态和输出结果。
-
适用场景 :适用于处理具有时间序列结构的数据,如自然语言处理中的文本生成、语言翻译、语音识别,以及时间序列预测任务等。
-
优势与局限 :
优势 :能够对序列数据中的时序依赖关系进行建模,从而拥有记忆能力,适合处理诸如句子、时间序列等具有顺序关系的数据。
局限 :存在梯度消失或梯度爆炸问题,导致难以捕捉长距离依赖关系;对较长的序列处理效率较低,因为需要逐一处理每个时间步。
五、生成对抗网络(Generative Adversarial Network, GAN)
-
原理 :GAN由一个生成器(Generator)和一个判别器(Discriminator)组成。生成器尝试根据随机噪声生成逼真的样本,使其尽量接近真实数据分布;而判别器则用于区别生成的样本是否为真实数据。这两个网络通过相互对抗进行训练:生成器试图欺骗判别器,使其将生成的样本视为真实样本;判别器则试图正确区分真实样本与生成样本。经过多轮训练,生成器可以生成越来越逼真的样本。
-
适用场景 :常用于图像生成、声音合成、文本生成、视频预测等生成任务,以及数据增强、图像修复等辅助任务。
-
优势与局限 :
优势 :生成的样本质量较高,可以生成逼真的图像、视频、音频等;具有较强的创造性和灵活性,可以满足多种生成任务的需求。
局限 :训练过程不稳定,容易出现模式崩溃(生成器只能生成有限类型的样本)、不收敛等问题;对数据质量和噪声敏感,需要大量的数据和计算资源进行训练。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。