今天给大家分享神经网络中的一个关键知识点,知识蒸馏
知识蒸馏(Knowledge Distillation)是深度学习中一种模型压缩技术,其核心思想是利用一个较大的、性能较强的模型(称为教师模型)来指导一个较小的、轻量级的模型(称为学生模型)进行训练,以提升学生模型的性能,使其在有限的计算资源下仍能达到较优的表现。
基本原理
知识蒸馏的核心思想是让学生模型不仅学习训练数据的真实标签(hard labels),还要学习教师模型提供的软标签(soft labels),即教师模型输出的概率分布。软标签包含了更丰富的信息(例如,各个类别之间的相似度),使得学生模型能够更好地捕捉到数据的潜在结构。
软标签包含了类别之间的概率分布,比如,一张猫的图片,教师模型可能给出猫的概率是0.9,狗是0.05,其他动物更低,这样的分布可能比硬标签 [1,0,0…] 更有信息量,帮助学生模型学习到更多的细节。
通过这种方式,学生模型不仅学习到数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力。
知识蒸馏的步骤
1.训练教师模型
首先需要训练一个性能较好的教师模型(Teacher Model)。
这个模型通常是一个大规模的、计算资源消耗较高的深度学习模型,可能是 ResNet、Transformer 或者 BERT 这样的大型神经网络。
2.生成软标签
使用教师模型对输入数据进行推断,生成软标签,即概率分布。
软标签通常包含了关于类别间相对关系的信息,这些信息对于学生模型的训练至关重要。
3.训练学生模型
学生模型(Student Model)通常是一个较小的、计算高效的神经网络,它的目标是学习教师模型的知识,同时保持较低的计算资源消耗。
在蒸馏过程中,学生模型的训练不仅仅依赖于训练数据的标签,还会依赖于教师模型的输出(软标签)。
通过让学生模型模仿教师模型的输出,学生模型可以在学习到目标类别的同时,也能学习到类别之间的细微差异。
核心原理
知识蒸馏的基本思路是通过最小化学生模型与教师模型输出之间的差距来学习教师模型的知识。
设:
教师模型 经过 softmax 后的概率分布为
其中 是教师模型在输入 上的 logits 输出,T 是温度参数(Temperature)。
学生模型 经过 softmax 后的概率分布为
其中 是学生模型的 logits 输出。
温度 T 控制 softmax 函数的平滑程度
-
当 时,softmax 变为标准形式。
-
当 时,softmax 变得更平滑,提供更丰富的类别信息。
知识蒸馏的损失函数通常由两部分组成
-
真实标签的交叉熵损失(Hard Loss)
这里的 是 one-hot 真实标签。
-
蒸馏损失(Distillation Loss)
这里的 是教师模型的 softmax 输出,它包含类别间的信息。
完整的目标函数为:
其中 是一个超参数,用于平衡两种损失的权重。
知识蒸馏的类别
知识蒸馏有多个变种,主要包括:
-
离线蒸馏:最常见的方法,先训练好教师模型,然后用其指导学生模型训练。
-
在线蒸馏:学生和教师模型同时训练,学生模型不断学习教师模型的信息。
-
自蒸馏:模型自身作为教师,将深层网络的知识蒸馏到浅层部分。
-
多教师蒸馏:使用多个教师模型指导一个学生模型。
知识蒸馏的优点
-
模型压缩:通过蒸馏,小模型可以接近大模型的性能,同时减少计算和存储成本。
-
提升小模型性能:通过从教师模型中提取额外的信息,学生模型能够取得接近或更好的性能,而不需要直接依赖大量数据。
-
泛化能力:知识蒸馏能够增强小模型的泛化能力,减少过拟合的风险。
-
鲁棒性提高:知识蒸馏可以帮助学生模型更好地处理数据扰动,提高模型稳健性。
案例分享
下面是一个完整的知识蒸馏的示例代码,使用 PyTorch 训练一个教师模型并将其知识蒸馏到学生模型。
-
定义教师模型(Teacher Model):使用一个较大的神经网络。
-
定义学生模型(Student Model):使用一个较小的神经网络。
-
计算蒸馏损失
-
使用教师模型的 softmax 输出(软标签)。
-
计算 Kullback-Leibler 散度(KL 散度)。
-
训练学生模型:结合交叉熵损失和蒸馏损失进行优化。
`import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import torch.nn.functional as F # 设置超参数 BATCH_SIZE = 128 EPOCHS = 5 TEMPERATURE = 4.0 # 温度参数 ALPHA = 0.5 # 交叉熵损失和知识蒸馏损失的权重 LEARNING_RATE = 0.01 # 数据加载 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) train_dataset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False) # 定义教师模型 class TeacherModel(nn.Module): def __init__(self): super(TeacherModel, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义学生模型 class StudentModel(nn.Module): def __init__(self): super(StudentModel, self).__init__() self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1) self.fc1 = nn.Linear(32 * 7 * 7, 64) self.fc2 = nn.Linear(64, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = x.view(x.size(0), -1) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 计算蒸馏损失 def distillation_loss(student_logits, teacher_logits, true_labels, temperature, alpha): # 计算教师模型和学生模型的 softmax 预测(使用温度参数) soft_targets = F.log_softmax(teacher_logits / temperature, dim=1) soft_predictions = F.log_softmax(student_logits / temperature, dim=1) # 计算 KL 散度损失 kl_loss = F.kl_div(soft_predictions, soft_targets, reduction='batchmean') * (temperature ** 2) # 计算标准交叉熵损失 ce_loss = F.cross_entropy(student_logits, true_labels) # 组合损失 return alpha * ce_loss + (1 - alpha) * kl_loss # 训练教师模型 def train_teacher(): teacher = TeacherModel().to(device) optimizer = optim.Adam(teacher.parameters(), lr=LEARNING_RATE) criterion = nn.CrossEntropyLoss() for epoch in range(EPOCHS): teacher.train() for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = teacher(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() print(f"Epoch [{epoch+1}/{EPOCHS}], Loss: {loss.item():.4f}") torch.save(teacher.state_dict(), "teacher_model.pth") print("教师模型训练完成并已保存!") return teacher # 训练学生模型 def train_student(teacher): student = StudentModel().to(device) teacher.eval() # 设置教师模型为评估模式(不更新梯度) optimizer = optim.Adam(student.parameters(), lr=LEARNING_RATE) for epoch in range(EPOCHS): student.train() for images, labels in train_loader: images, labels = images.to(device), labels.to(device) optimizer.zero_grad() student_outputs = student(images) teacher_outputs = teacher(images).detach() # 关闭教师模型的梯度计算 loss = distillation_loss(student_outputs, teacher_outputs, labels, TEMPERATURE, ALPHA) loss.backward() optimizer.step() print(f"Epoch [{epoch+1}/{EPOCHS}], Loss: {loss.item():.4f}") torch.save(student.state_dict(), "student_model.pth") print("学生模型训练完成并已保存!") return student # 评估模型 def evaluate_model(model): model.eval() correct = 0 total = 0 with torch.no_grad(): for images, labels in test_loader: images, labels = images.to(device), labels.to(device) outputs = model(images) _, predicted = torch.max(outputs, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print(f'模型准确率: {100 * correct / total:.2f}%') # 运行 device = torch.device("cuda"if torch.cuda.is_available() else"cpu") # 训练教师模型 teacher_model = train_teacher() # 训练学生模型(使用知识蒸馏) student_model = train_student(teacher_model) # 评估教师和学生模型 print("\n教师模型测试集准确率:") evaluate_model(teacher_model) print("\n学生模型测试集准确率:") evaluate_model(student_model) `
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。