RAGFlow 集成 Milvus向量库操作指南

一、前置条件检查

  1. 版本兼容性

    RAGFlow版本Milvus版本Python SDK版本
    ≥v1.2.02.4.xpymilvus≥2.4.0
    ≥v1.3.52.5.xpymilvus≥2.5.1
  2. 网络连通性测试

    # 在 RAGFlow 容器内执行
    docker exec -it ragflow_container bash
    curl -v telnet://milvus-host:19530
    nc -zv milvus-host 19530
    

二、配置变更全流程

  1. 修改 docker-compose.yaml

    services:
      ragflow:
        environment:
    +      VECTOR_DB_TYPE: "milvus"
    +      MILVUS_HOST: "milvus-prod"
    +      MILVUS_PORT: "19530"
    +      MILVUS_USER: "admin"
    +      MILVUS_PASSWORD: "SecureP@ss123!"
        depends_on:
    +      - milvus
    
    +  milvus:
    +    image: milvusdb/milvus:v2.5.3
    +    ports:
    +      - "19530:19530"
    +    volumes:
    +      - milvus_data:/var/lib/milvus
    +      - milvus_conf:/etc/milvus
    
  2. 创建 Milvus 专用账户

    docker exec -it milvus-prod bash
    milvus-cli --user root --password milvusroot
    CREATE USER 'admin' IDENTIFIED BY 'SecureP@ss123!';
    GRANT ALL ON *.* TO admin;
    

三、向量库迁移实操

  1. 从 Chroma 导出数据

    from chromadb.api import ClientAPI
    
    client = ClientAPI()
    collections = client.list_collections()
    for col in collections:
        data = col.get(include=["embeddings", "metadatas"])
        with open(f"/backup/{col.name}.json", "w") as f:
            json.dump(data, f)
    
  2. 向 Milvus 导入数据

    from pymilvus import utility, Collection
    
    collection = Collection("rag_docs")
    for file in os.listdir("/backup"):
        with open(file) as f:
            data = json.load(f)
            entities = [
                {
                    "id": hash(item["metadata"]["source"]),
                    "text": item["document"],
                    "vector": item["embedding"],
                    "source": item["metadata"]["source"]
                } for item in data
            ]
            collection.insert(entities)
    utility.wait_for_loading_complete("rag_docs")
    

四、检索适配层改造

  1. 修改检索器实现

    # 原 Chroma 实现
    from chromadb import QueryResult
    
    class ChromaRetriever:
        def search(self, query):
            return self.collection.query(query_texts=[query])
    
    # 改为 Milvus 实现
    from pymilvus import SearchRequest, AnnsField
    
    class MilvusRetriever:
        def __init__(self):
            self.collection = Collection("rag_docs")
            
        def search(self, query, top_k=5):
            req = SearchRequest(
                data=[self._encode(query)],
                anns_field=AnnsField("vector"),
                param={"metric_type": "IP", "params": {"nprobe": 32}},
                limit=top_k
            )
            return self.collection.search(req)
    
  2. 混合检索增强

    def hybrid_search(query):
        # 向量检索
        vector_results = milvus_retriever.search(query)
        
        # 关键词检索
        keyword_results = self._keyword_search(query)
        
        # 结果融合 (Weighted Reciprocal Rank Fusion)
        fused = []
        for res in [vector_results, keyword_results]:
            for i, item in enumerate(res):
                score = item.score * (1 / (i + 1))
                fused.append((item.id, score))
                
        return sorted(fused, key=lambda x: -x[1])[:10]
    

五、性能优化配置

  1. 索引参数优化

    index_params = {
        "index_type": "GPU_IVF_PQ",
        "params": {
            "nlist": 4096,       # 平衡查询速度和内存
            "m": 32,             # PQ 子量化器数量
            "nbits": 8           # 每个向量的存储位数
        },
        "metric_type": "IP"
    }
    
  2. 缓存策略

    # milvus.yaml 配置
    cache:
      cache_size: 16GB        # 分配内存缓存
      insert_buffer_size: 2GB # 写入缓冲区
      preload_collection: rag_docs # 启动时预加载
    

六、验证与监控

  1. 集成验证脚本

    # 测试向量插入
    python -c "from pymilvus import Collection; c=Collection('rag_docs'); print(c.num_entities)"
    
    # 测试检索时延
    ab -n 1000 -c 10 -p query.json http://ragflow:9380/api/search
    
  2. 监控看板配置

    # Prometheus 配置
    - job_name: 'milvus'
      static_configs:
        - targets: ['milvus-prod:9090']
    
    # Grafana 导入看板
    Dashboard ID: 13613  # 官方监控模板
    

故障排查指南

  1. 连接失败 → 检查防火墙规则和SELinux状态
  2. 检索超时 → 增加 search.params.nprobe
  3. 内存不足 → 启用 GPU_IVF_PQ 索引减少内存占用
  4. 数据不一致 → 使用 utility.flush(['rag_docs']) 强制同步

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

WebRTC 简介 WebRTC,名称源自网页实时通信(Web Real-Time Communication)的缩写,是一个支持网页浏览器进行实时语音通话或视频聊天的技术,是谷歌2010年以6820万美元收购Global IP Solutions公司而获得的一项技术。 WebRTC提供了实时音视频的核心技术,包括音视频的采集、编解码、网络传输、显示等功能,并且还支持跨平台:windows,linux,mac,android。 虽然WebRTC的目标是实现跨平台的Web端实时音视频通讯,但因为核心层代码的Native、高品质和内聚性,开发者很容易进行除Web平台外的移殖和应用。很长一段时间内WebRTC是业界能免费得到的唯一高品质实时音视频通讯技术。 为什么需要 WebRTC 开发者教程? 虽然WebRTC技术已经较为成熟,其集成了最佳的音/视频引擎,十分先进的codec,且包含了使用STUN、ICE、TURN、RTP-over-TCP的关键NAT和防火墙穿透等众多门槛并不低的技术。抛开音视频技术本身的复杂性外,要想找到合适的资料、完整的代码和库、配合合适的IDE和辅助工具能正常地实现编译和安装都非常的不容易,而这还只是个开始。没有靠谱的教程,你该怎么开始?那么地坑等在那,难道你打算一个一个趟过去? 本《WebRTC 零基础开发者教程》主要讲了什么 本文中提供下载的《WebRTC 零基础开发者教程》将以一个初学者的角度,从0开始逐步引导你掌握WebRTC开发的方方面面(当然,教程中更多的是操作性的内容,具体到技术原理和实现,显然不是本教程的讨论范畴)。 《WebRTC 零基础开发者教程》目录 1 工具 1.1 depot_tools 1.1.1 目标 1.1.2 Chromium 1.1.3 使用说明在这儿 1.1.4 下载 1.1.5 使用 1.1.6 具体使用例子 1.2 Gyp工具 1.3 Python工具 1.4 本地集成开发环境(IDE ) 1.4.1 Visual studio 1.4.2 Kdevelop 1.4.3 Eclipse 2 Webrtc 2.1 下载、编译 2.1.1 Windows下 2.1.2 ubuntu下编译 2.1.3 编译Android(只能在 linux 下) 3 webrtc开发 3.1 开发P2P视频软件需要处理的问题 3.1.1 用户列的获取、交换、信令的交换 3.1.2 P2P通信 3.1.3 多媒体处理 3.2 webrtc架构 3.2.1 WebRTC架构组件介绍 3.2.2 WebRTC核心模块API介绍 3.2.3 webRTC核心API详解 4 Libjingle详细介绍 4.1 重要组件 4.1.1 信号 4.1.2 线程和消息 4.1.3 名称转换 4.1.4 SSL支持 4.1.5 连接 4.1.6 传输,通道,连接 4.1.7 候选项 4.1.8 数据包 4.2 如何工作 4.2.1 Application模块 4.2.2 XMPP Messaging Component 模块 4.2.3 Session Logic and management commponent 模块 4.2.4 Peer to peer Component 模块 4.2.5 其他 4.3 建立libjingle应用程序 5 代码分析 5.1 音频通道建立过程 5.2 音频接收播放过程 5.3 视频接收播放过程 6 协议 6.1 XMPP协议 6.1.1 原理介绍 6.1.2 XMPP 协议网络架构 6.1.3 XMPP 协议的组成 6.1.4 Xmpp介绍 6.1.5 协议内容 6.2 Stun协议 6.2.1 P2P实现的原理 6.2.2 P2P的常用实现 6.2.3 Stun URI 6.2.4 内容 6.2.5 中文内容 6.2.6 开源服务器 6.2.7 公开的免费STUN服务器 6.3 Turn协议 6.3.1 概念 6.3.2 Turn uri 6.3.3 开源服务器工程 6.3.4 开源库 6.4 交互式连接建立(Interactive Connectivity Establishment) 6.4.1 IETF规格 6.4.2 开源工程 6.5 XEP-0166 Jingle 6.5.1 绪论 6.5.2 需求 6.6 Sctp协议 6.7 Rtp协议 7 附件 7.1 Gyp工具 7.2 Google test程序 7.3 Webrtc库介绍 7.4 webrtc代码相关基础知识 7.5 STUN和TURN技术浅析 7.6 基于ICE的VoIP穿越NAT改进方案 7.7 ubuntu安装使用stuntman 7.8 一个开源的ICE库——libnice介绍 7.9 4种利用TURN穿越对称型NAT方案的设计与实现 7.10 基于ICE方式SIP信令穿透Symmetric_NAT技术研究
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值