你有没有想过,为什么同样是AI问答系统,有些答案精准如手术刀,有些却像老人家的唠叨?
当我们说"把文档丢进Dify就能搞定RAG"时,工程师们默默翻了个白眼——因为他们知道,真正的魔法发生在幕后。
RAG:表面简单,内核复杂
前几天,产品经理小张兴冲冲地来找我:“我发现了个神器叫Dify,听说只要把公司文档灌进去,就能搭建一个智能客服。周末我试了下,真的超简单!”
我没忍住笑了:“那我们工程团队是不是可以裁一半?
”
RAG(Retrieval-Augmented Generation)表面看起来很简单:把文档转成向量存起来,用户提问时找到相关内容,喂给大模型生成答案。一条流水线,三个环节,似乎谁都能上手。
可真实世界中,工程师们面对的是这样的场景:
医疗客服系统需要从上万份病历中提取准确信息;法律顾问需要从几百页合同中找出关键条款;技术支持需要从混乱的文档库中定位精确答案。
这时,简单部署已远远不够。
不信?我们来做个实验。
用同样的RAG框架处理两份文档:一份是结构清晰的产品手册,一份是杂乱无章的客户反馈。对于前者,基础RAG表现尚可;对于后者,没有工程调优的RAG可能会交出一份"胡言乱语
"的答卷。
这就是工程师价值所在。
分块策略:RAG效果的决定性因素
昨天,团队刚解决了一个棘手问题:客户反馈AI回答内容前后矛盾。排查发现,原来是分块策略出了问题。
分块策略就像切菜。切得太大,锅炉装不下;切得太小,营养流失;切得没有规律,火候掌握不好。
在RAG中,工程师的挑战在于:如何把文档切成AI能高效处理的单元
。
一位资深工程师曾告诉我:“优秀的分块策略能让检索准确率提升30%,这远比换一个更贵的模型效果好。”
从技术角度看,分块策略主要有五种:
固定大小分块像流水线工人,一刀切,简单但可能把完整概念切断;语义分块则像老厨师,按食材纹理切割,保留语义完整性;递归分块如同俄罗斯套娃,先大后小,层层分解;基于文档结构的分块遵循文档天然边界;基于LLM的分块则是高级玩法,让AI自己判断怎么切最合理。
每种策略适用不同场景。
金融报告适合结构化分块;技术文档适合语义分块;而对于混合内容,可能需要自定义策略。这就是为什么不能简单"灌入文档"就完事。
从"能用"到"好用"的工程挑战
上个月,竞争对手也上线了一个RAG系统。表面上看功能差不多,但用户反馈差距明显。同事笑称:“他们用的是’初级厨师’配方,我们用的是’米其林’标准。”
RAG技术体系中,工程师的价值主要体现在这几个方面:
文档处理:真实世界的文档常常杂乱无章。工程师需要预处理文档,识别并修复格式问题,处理表格、图片等非文本内容。
检索优化:工程师通过算法调优,确保返回最相关内容,这涉及向量模型选择、相似度计算、召回策略等多个技术决策。
分块策略:根据业务特点选择和调整分块方法,确保语义连贯性和检索效果。
提示工程:设计问题模板和上下文组织方式,引导LLM生成更准确、更有用的回答。
业务集成:将RAG与现有系统无缝集成,处理用户认证、数据安全、访问控制等复杂问题。
结语
一个真正好用的RAG系统,需要在这些环节上反复调优
。就像厨师不断调整配方和火候,工程师不断优化参数和策略,把系统从"能用"提升到"好用"。
这种深度工程能力,是任何现成工具都无法替代的。
我们的工程团队上线的RAG系统,经过三轮迭代,在客户满意度上提升了42%。这背后是无数次的测试、调整和优化,是工程师们对业务的理解和技术的把握。
所以,当有人说"RAG就是把文档灌进Dify
"时,我总是笑而不语。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。