企业怎样用大模型 |智能体式AI是企业级AI的主要形态

#生成式人工智能 (Generative AI)是一种能够根据用户的提示或请求创建内容(如文本、图像、视频、音频或软件代码等)的人工智能,今天,DeepSeek生成文字、豆包生成图片、或者Cursor生成软件代码,这些消费级或者个人级的“生成式AI”应用已经为广发用户所熟悉。

生成式AI主要依赖于被称为“深度学习模型”的机器学习技术,即模拟人类大脑学习与决策过程的算法,目前这类模型最有代表性的就是“大语言模型”(LLM)。 这些模型通过识别和编码海量数据中的模式与关系来工作,随后利用这些信息理解用户的自然语言请求或问题,并基于训练数据实时生成高质量的文本、图像及其他内容。

生成式人工智能的主要特点有:

1. 内容生成 :AI模型能够创建连贯的文本(如文章)或解答复杂问题。利用生成式AI解决方案编写代码,可简化软件开发流程,让不同技能水平的开发者更易编写代码。

2.数据分析:生成式AI能分析海量数据,并通过分析发现模式和趋势。其模型可简化复杂工作流程,例如供应链领域的洞察,从而提升客户体验。

3.适应性:生成式AI可根据用户输入调整输出。若用户向模型提供具体反馈,其结果会更贴合用户需求,从而优化输出。

4.个性化:生成式AI技术能基于用户输入提供个性化推荐和体验。

#智能体人工智能(Agentic AI )指的是经过设计能够自主决策、采取行动,并在有限监督下追求复杂目标的AI系统。它将大型语言模型(LLM)的灵活性与传统软件的精确性相结合。

这类AI通过自然语言处理(NLP)、机器学习、强化学习和知识表示等技术,自主行动以实现目标。

与生成式AI被动响应用户输入不同,智能体式AI是一种主动的AI驱动模式,能够适应不同或变化的场景,并具备基于上下文做出决策的“能动性”(Agency)。它的独立应用包括机器人技术、复杂分析、虚拟助手等,能够很好地赋能个人级和企业级的大规模信息系统。

智能体式人工智能的主要特点是:

1. 决策:基于预设的计划和目标,这类AI系统可在无需或仅需少量人类干预的情况下,评估情境并决定行动路径。

2. 问题解决:智能体式AI通过“感知、推理、行动、学习”四步法解决问题:首先由AI智能体收集和处理数据,大语言模型(LLM)作为编排器,分析数据以理解情境,随后整合外部工具,通过反馈持续优化和学习。

3.自主性:智能体式AI系统具备自主学习和操作能力,使其成为组织简化工作流程、让机器在最少人工干预下执行复杂任务的前景技术。

4.交互性:由于具有主动的特性,智能体式AI可与外部环境交互并收集数据以实时调整。就像是自动驾驶汽车需持续分析周围环境,并做出安全、准确的驾驶决策。

5.规划能力:AI模型能处理复杂场景,并执行多步骤策略,以实现特定目标。

我将几种AI的比较总结如下:

智能体式AI生成式AI传统AI
主要功能目标导向的决策和行动文本、图像、代码等生成重复性任务的自动执行
学习方式通过经验和增强学习来提升智能从已有数据中学习形成智能预先定义的规则和人类介入
自主性基于最少人类介入的运作需要人类提示和指引特定的算法以及规则集

下图是我提出的智能体式AI在企业中应用的“双重闭环”:

- 业务流程闭环

- 智能体达成闭环

形状, 多边形  AI 生成的内容可能不正确。

智能体式AI(Agentic AI)与AI智能体(AI Agent)概念上有所区分,前者是框架,是“在有限监督下解决问题”的广义的智能系统的概念,而后者则是该框架内的组成部分,以一定自主性处理任务和流程。 通常一个AI智能体完成具备特定的能力,而智能体式AI则是整合多个AI智能体,每个智能体拥有各自的目标和任务,在智能体式AI的框架内协同工作,以实现智能体式AI系统的用户的目标。

AI编排(Orchestration)指对信息系统、业务能力服务和AI智能体的协调与管理。编排平台可自动化AI 工作流程、跟踪任务完成进度、管理资源使用、监控数据流和存储,并处理故障事件。

通过合理的架构设计,理论上数十、数百甚至数千个智能体可协同高效工作。

图示  AI 生成的内容可能不正确。

生成式AI是消费级和个人级大模型应用的主要场景,而智能体式AI则是“企业AI”(Business AI)的重点发展方向,将多个智能体集成到复杂工作流程中,自主执行复杂组织的业务流程,例如:

**公安:**处理市民报警,根据报警信息,安排恰当的处警措施,并且形成处警记录,更新警务知识库。

img

KPro企业知识开源

Business knowledge Open Source“中国企业知识开源计划”是一个基于Git的文档开源平台,为咨询公司、培训公司、软件公司、IT服务公司、企业管理者等企业的知识工作者提供一致性的知识来源,促进中国企业服务行业发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值