以下内容不局限于DeepSeek,提示词请根据实际情况修改增减,举一反三用好每一个提质增效工具。
一、为什么要用AI修改材料?
- 省时高效:自动优化逻辑、润色语言,比手动修改快5倍
- 精准匹配政策:自动替换过时表述,确保符合最新要求
- 提升质量:让材料更有层次感、更符合领导口味
但很多人直接用AI修改,结果越改越乱,关键是要掌握正确方法!
二、五步修改法,让材料脱胎换骨
第1步:输入原文,让AI诊断问题
指令:
“请分析这篇材料的主要问题:逻辑是否清晰?表述是否空泛?是否符合2024年最新政策要求?”
输出:
问题诊断: 1. 逻辑问题:第二部分“工作措施”与第三部分“成效”缺乏衔接 2. 表述问题:多次使用“高度重视”“切实加强”等空话 3. 政策问题:“放管服”表述已过时,应改为“营商环境优化”
第2步:优化结构,让材料更流畅
指令:
“调整这篇材料的结构,使其符合‘问题→措施→成效’逻辑链,每部分配1个案例。”
输出:
优化后结构: 一、问题剖析(企业反映审批慢、成本高) 二、整改措施(推行“一窗通办”、减税降费) 三、实际成效(审批时间缩短60%,企业满意度提升)
第3步:替换空话,让表述更扎实
指令:
“将以下空泛表述替换成具体措施:‘加强组织领导’ → 明确责任人和时间节点‘提高思想认识’ → 结合最新政策学习要求”
输出:
原句:“要加强组织领导,提高思想认识。”
修改后:“成立专项工作组(组长:XX,每周调度),组织3次专题学习(最新‘新质生产力’论述)。”
第4步:植入真实案例,增强说服力
指令:
“在‘工作成效’部分添加:1组对比数据(如‘同比提升XX%’)1个企业真实案例(名称+具体受益点)”
输出:
成效: 审批时间从5天压缩至2小时(提速90%) A公司通过“秒批”服务当天拿到许可证(案例)
第5步:最后润色,让材料更自然
指令:
“检查全文,确保:没有AI痕迹(如过于工整的排比)加入1-2处口语化表达(如‘虽然…但是…’)保留1处‘待领导确认’的标注(如数据需核实)”
输出:
终稿特点: 逻辑清晰,案例真实 政策表述最新 略带“人工修改”痕迹(如手写批注式备注)
三、典型材料的修改技巧
- 领导讲话稿修改
问题:太模板化,缺乏个性
修改指令:
“让这篇讲话稿更符合XX领导的风格:加入TA常用的排比句(如‘三个聚焦’)添加1-2个本地区典型案例结尾用‘金句’收束(如‘路虽远,行则将至’)”
- 工作总结修改
问题:流水账,没亮点
修改指令:
“优化这篇总结,突出‘三新’:新突破(最亮眼的数据)新打法(最具创新的做法)新目标(下一步计划)”
- 整改报告修改
问题:整改措施模糊
修改指令:
“让整改措施更具体:每条措施标注‘责任人+完成时间’添加‘整改前 vs 整改后’对比照片最后加‘长效机制’防止反弹”
四、 超长文章分段处理
如果文章太长(超过 DeepSeek 单次处理限制,如 128K),可以:
分段提交(每次处理一部分)
总结每段核心(再整合)
最后整体优化
指令:
"这篇文章很长,我会分几次发送,请先帮我总结/优化第一部分:[粘贴内容]"
五、总结:DeepSeek修改材料的正确姿势
- 诊断问题(逻辑、表述、政策)
- 优化结构(问题→措施→成效)
- 替换空话(具体化、数据化)
- 植入案例(真实数据+典型事例)
- 润色自然(去AI味+人工痕迹)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。